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INTRODUCTION 
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Introducing your presenters 

• James Roger 

• Chrissie Fletcher 

• Neil Hawkins 

2 



Introducing yourselves… 

• What experience, if any, do you have relating to 
network meta-analysis? 

• What are you hoping to get out of this course? 
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Course Objectives 

1. Understand what is a network meta-analysis and 
associated terminology 

2. Understand the methodology and assumptions used in a 
NMA 

3. Understand how to plan, conduct, report and interpret a 
NMA 

4. Gain some hands on experience of fitting an NMA 

5. Understand how NMAs are used in drug development 

6. Understand what reimbursement agencies think about 
NMAs 

7. Know where to look to find more information 
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Structure of agenda – Day 1 

• Introduction and course objectives 

• What is an NMA and why is NMA important? 

• Definitions 

• Assumptions 

• Steps involved in an NMA 

• Workshop 

• Case study 

• NMA methodology 

• How to conduct NMA for different types of endpoints 

• continuous 

• Frequentist vs Bayesian 

• Workshop 
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Structure of agenda – Day 2 

• NMA methodology cont. 

• How to conduct NMA for different types of endpoints 

• Binary, count, hazard ratios etc 

• Workshop 

• New NMA techniques 

• Applications of NMA 

• Industry perspective:  drug development 

• Academic/payer perspective:  evidence based medicine 

• Workshop 

• NMA in HTA methodology guidelines 

• NMA best practices  

• Conclusions & wrap-up 

6 



WHAT IS AN NMA? 
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Lots of different terminology used 

• Indirect comparison 

• Indirect treatment comparison 

• Adjusted indirect comparison 

• Adjusted indirect treatment comparison 

• Mixed treatment comparison 

• Network meta-analysis 
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Definitions 

Indirect (Treatment) Comparison  

A comparison of treatments that have not been compared 
‘head-to-head’ in a randomised controlled trial (RCT) 

 

Adjusted Indirect (Treatment) Comparison  

A comparison of the relative treatment effects using a 
common comparator 

[These may often be referred to as an Indirect (treatment) 
comparison] 
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Definitions 

Mixed treatment comparison 

Combining treatment effects obtained from direct (head to 
head) RCTs with indirect estimates of treatment effects 

 

Network meta-analysis 

Allowing multiple pairwise comparisons for many 
treatments to be estimated simultaneously to provide 
relative treatment effects of multiple treatment 
comparisons 
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Direct Comparison 

• One or more RCTs 

• Meta-analysis of AvB trials to gain 
better estimate of the overall 
treatment difference 

• Usual issues with meta-analysis 
apply 

• Publication Bias 

• Heterogeneity 

 

A A 

B B 

n 
ab 
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Indirect Comparison 

• Indirect comparison of AvB is 
obtained from meta-analysis of 
AvC trials and meta-analysis of  
BvC trials 

 
     Indirect (da-b) = dac – dbc 

or, Indirect (da/b) = dac/dbc 

 

• Two sets of meta-analysis 
assumptions 

• Extra assumptions are involved 

 

 

AA

BB

CC

nac

nbc

6 



Network Meta Analysis 

• Mixture of direct and indirect 
comparisons from meta-
analyses of RCTs 

• Three sets of meta-analysis 
assumptions 

• Additional assumptions 

 

AA

BB

CC

nac

nbc

nab
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• Mixture of direct and indirect 
comparisons from meta-
analyses of RCTs 

• Three sets of meta-analysis 
assumptions 

• Additional assumptions 

 

AA

BB

CC

nac

nbc

nab
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ISPOR Indirect Treatment Comparison 
Good Research Practices report (part 1)* 

* http://www.ispor.org/workpaper/interpreting-indirect-treatment-comparison-and-network-meta-analysis-studies-for-decision-making.pdf  
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Other NMA Definitions - EUnetHTA 
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EUnetHTA relative effectiveness guidelines (released Mar 2013):  

 http://www.eunethta.eu/outputs/methodological-guideline-rea-pharmaceuticals-direct-and-indirect-comparison  
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ASSUMPTIONS 
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Assumptions 

• Exchangeability 

• This is the assumption that the direct effects , dap(i) ,  are 
exchangeable with all the other treatment effects in the AvP 
trials  

dap(i) ~ N(dap, s
2
ap) 

 

• If this can be assumed then different contrasts of treatments 
that give indirect effects are also exchangeable  
 

dab(i) ~ N(dab, s
2
ab) 

 

• Difficult to assess directly 
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Assumptions 

• Homogeneity 

• For each pair-wise comparison, are trials clinically and 
statistically comparable 

• Heterogeneity can be present in the individual meta-analyses 
that comprise the dataset for an NMA 

• Heterogeneity could be explained by adjusting for study level 
baseline characteristics. 

• The influence of heterogeneity can be mitigated by using a 
random effects modelling approach (standard approach) 

• Can also be mitigated by moving from a ‘difference’ treatment 
estimate to a ‘ratio’ estimate 
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Assumptions 

• Similarity 

• The assumption that an indirect comparison does not differ by 
patient subgroups 

• Thorough exploration of patient subgroup is required to show 
that indirect comparison estimates are not different among 
subgroups, or influenced by outlier studies. 

• Use of meta-regression techniques 

• Important to show that indirect comparisons are not influenced 
by study level patient characteristics 
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Assumptions 

• Consistency 
• The assumption that the indirect evidence is consistent with any 

direct evidence 

• This can be explored by comparing the discrepancy between direct 
and indirect estimates 
 

discrepancy wab = ddir
ab – dind

ab 

 

• For comparison of AvB, the estimate based on only the direct 
evidence is compared to the estimate obtained from the NMA 
excluding the direct AvB evidence. This can be done for each 
comparison in the NMA. 

• DIC is used to detect inconsistencies 

• See also Dias et al (2010) and NICE DSU Report 4 

14 



EXAMPLES OF NMAS 
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Placebo 

Indirect analysis Head-to-head study 

Romiplostim Eltrombopag 

2 Trials 1 Trial 

16 

Cooper KL et al. Immune Thrombocytopenia.  Int J Technol Assess Health Care. 2012;28:249–258 



Placebo 

Indirect analysis Head-to-head study 

Strontium 

Raloxifene 

Teriparatide 

Zoledronate 

Denosumab Alendronate 

Risedronate 

Etidronate 

Ibandronate 

1 Trial 

2 Trials 

3 Trials 

1 Trial 

1 Trial 1 Trial 

2 Trials 

2 Trials 

4 Trials 

17 

Freemantle et al.  Osteoporosis, International Osteoporosis Foundation and National Osteoporosis Foundation.  2012 
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Mandema. A Dose–Response Meta-Analysis for Quantifying Relative Efficacy of Biologics in Rheumatoid Arthritis 
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NICE Decision Support Unit Technical Series Document 1 Introduction to evidence synthesis for decision making 

 

http://www.nicedsu.org.uk/TSD1 Introduction_final_03_02_12.pdf


20 Cochrane (2012) : Bisphosphonates in multiple myeloma: a network metaanalysis (Review) 



WHY IS NMA IMPORTANT? 
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Rationale for network meta-analyses 

• Increasingly many organizations are comparing new 
treatments against existing therapies by using network 
meta analysis techniques 

• Questions concerning the comparative effectiveness 
(US) or the relative effectiveness (EU) of a new 
treatment receiving regulatory approval are being raised 
by numerous healthcare, clinical and government 
stakeholders.   
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EUnetHTA - European network for Health Technology Assessment 
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Relative Effectiveness/Efficacy  
HLPF & EFPIA Definition 

• Referred to as Relative effectiveness* 

 Relative Effectiveness can be defined as the extent to which an 
intervention does more good than harm compared to one or 
more intervention alternatives for achieving the desired results 
when provided under the usual circumstances of health care 
practice 

 Different than Relative Efficacy* 

 Relative Efficacy can be defined as the extent to which an 
intervention does more good than harm, under ideal 
circumstances, compared to one or more alternative 
interventions 

 

* Adopted by High Level Pharmaceutical Forum 
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Comparative Effectiveness (CE) – US 
Definition 

 Comparative Effectiveness Research* is the conduct and synthesis 
of systematic research comparing different interventions and 
strategies to prevent, diagnose, treat and monitor health conditions. 

 The purpose of this research is to inform patients, providers, and 
decision-makers, responding to their expressed needs, about which 
interventions are most effective for which patients under specific 
circumstances.   

 To provide this information, comparative effectiveness research must 
assess a comprehensive array of health-related outcomes for diverse 
patient populations.  

 Defined interventions compared may include medications, procedures, 
medical and assistive devices and technologies, behavioural change 
strategies, and delivery system interventions.  

 This research necessitates the development, expansion, and use of a 
variety of data sources and methods to assess comparative 
effectiveness. 

* US Dept of Health 



Evidence needs for regulators and payers 

25 
Eichler et al, Nature Reviews 2010 



Areas of mutual interest between 
regulators and payers 

• Exchange of information 

• Parallel scientific advice 

• Debate on evidence requirements 

• Relative efficacy assessment 

• Alignment on post-marketing research activities 

• Parallel review 

• Managed market entry (provisional/progressive 
decisions) 

 

 

 

 

 

26 EMA Eichler EU DIA 2011 
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EMA website:   

http://www.ema.europa.eu/ema/index.jsp?curl=pages/news_and_events/news/2013/06/news_detail_001807.jsp&mid=WC0b01ac058004d5c1 

 

http://www.ema.europa.eu/ema/index.jsp?curl=pages/news_and_events/news/2013/06/news_detail_001807.jsp&mid=WC0b01ac058004d5c1
http://www.ema.europa.eu/ema/index.jsp?curl=pages/news_and_events/news/2013/06/news_detail_001807.jsp&mid=WC0b01ac058004d5c1
http://www.ema.europa.eu/ema/index.jsp?curl=pages/news_and_events/news/2013/06/news_detail_001807.jsp&mid=WC0b01ac058004d5c1
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NMA is increasingly accepted by more HTA 
agencies 

• Time to market has become time to reimbursement and 
not time to regulatory approval 

• NMA becoming critical as part of evidence synthesis 
and demonstrating how a new treatment compares to 
existing therapies used in local medical practice to 
support a local HTA at product launch 

• Increasing exchange of scientific information between 
European HTA networks (EUnetHTA) and payers within 
member states on evidence to support health care 
decisions  

• Methodology has evolved and NMA becoming more 
accessible and accepted where gaps in evidence exist 



Summary from HTA agency 
methodology guidelines 

• NMAs should only be conducted when RCTs don’t exist 

• Less weight is given to a NMA compared to RCTs 

• Observational data should not be used in a NMA 

• Most note that a NMA has relatively low power to detect 
important differences 

• All HTA bodies comment on the underlying assumption 
that a NMA is only valid if the contributing RCTs are 
similar 
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Introducing the IMI* ‘GetReal’ project 

* Innovative Medicines Initiative 
30 
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Relationship between the WPs 

32 



Developing a predictive model for 
relative effectiveness (WP4) 
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STEPS INVOLVED IN AN NMA 

1 



Steps for conducting NMA 

2 

1.  Research Project Plan 

2.  Systematic Review 

3.  Analysis 

4.  Reporting 

43 



Step 1.  Research project plan 

• Objectives 

• Populations 

• Endpoints 

• Comparators 

• Any subgroups/sub-populations of interest 

• Define systematic review (protocol) 

• Analysis methods 

• Limitations and biases 
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Workshop 1:  NMA Challenges 

• What are the challenges in conducting a NMA? 

4 
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Analysis methods: considering 

sources of heterogeneity 

46 NICE Technical Series Documents 2011:  http://www.nicedsu.org.uk/Evidence-Synthesis-TSD-series(2391675).htm  
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Step 2.  Systematic review 

6 

Databases 

Search criteria 

Inclusion/exclusion criteria 

-  Study identification 

Extraction and analysis 

* May be conducted by external vendor 

* 

* 

* 
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Step 3.  Analysis – understanding 
evidence 

• Understand scope of clinical package 

• Critically assess the data 

• Clinical and statistical sources of heterogeneity 

• How much direct (head to head) data is available? 

• Define what “common comparators” exist 

• What indirect comparisons/mixed treatment comparisons 
can be assessed? 

• Develop network diagram / treatment comparison grid 
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Step 3.  Analysis – conduct planned 
analysis 

• Summarise direct head to head comparisons using meta-
analysis 

• Conduct NMA 

• Investigate heterogeneity and inconsistent treatment 
effects (exchangeability assumption) 

• Conduct meta-regression analyses to explore important 
prognostic variables and extensive sensitivity analyses  

• Assess the statistical heterogeneity 
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Step 4.  Reporting 

• Summarise the evidence package 

• Sources of clinical and statistical heterogeneity 

• Present summaries (tables, graphs) of head to head 
data, indirect comparisons and mixed treatment 
comparisons 

• Provide interpretation of results 

• Describe extent of heterogeneity 

• Describe limitations and potential biases 
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Interpreting Indirect Treatment Comparisons and Network Meta-Analysis for Health-Care Decision Making: Report of the  

ISPOR Task Force on Indirect Treatment Comparison Good Research Practices: Part 1 
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NMA CASE STUDY - IMMUNE 
THROMBOCYTOPENIA* 

10 * Funded by Amgen 
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Aims and objectives 

12 

• To validate the results of previous indirect comparisons 
of romiplostim and eltrombopag supporting HTAs 
(NICE)  

• To explore additional statistical methods for the indirect 
comparison of romiplostim and eltrombopag: 

• In particular, determine statistical methods that allow more 
robust consideration of parameter uncertainty (that is, 
heterogeneity between studies) for indirect comparison 



Methods 

Systematic review to identify relevant RCTs 

Four RCTs each identified for romiplostim and eltrombopag 

Final selection: Two romiplostim RCTs and one eltrombopag RCT 

• Inclusion criteria: 

• Treatment duration ≥24 weeks and double-blind 

• Reported data included platelet response  

• Inclusion criteria: 

• RCTs comparing romiplostim or eltrombopag vs placebo for 

management of ITP 

13 



Placebo 

Indirect analysis Head-to-head study 

Romiplostim Eltrombopag 

2 Trials 1 Trial 

14 

Network diagram 



Basis for Indirect Comparison 

Eltrombopag Placebo Romiplostim Placebo 

Overall response 

Non-splenectomised 51/85 (60%) 5/41 (12%) 36/41 (88%) 3/21 (14%) 

Splenectomised 26/50 (52%) 2/21 (10%) 33/42 (79%) 0/21 (0%) 

Overall 77/135 (57%) 7/62 (11%) 69/83 (83%) 3/42 (7%) 

Durable response 

Non-splenectomised 38/85 (45%) 3/41 (7%) 25/41 (61%) 1/21 (5%) 

Splenectomised 19/50 (38%) 1/21 (5%) 16/42 (38%) 0/21 (0%) 

Overall 57/135 (42%) 4/62 (6%) 41/83 (49%) 1/42 (2%) 
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Definitions of Platelet Response Data 
Used for Indirect Comparison 

Eltrombopag Romiplostim 

Timing of definition for 

outcome measure 

Post hoc analyses  A priori 

Overall platelet response Percentage of patients with a 

platelet count ≥50 and ≤400 x 109/L 

for ≥4 consecutive* weeks, 

excluding those receiving rescue 

medication during the assessment 

following a platelet response 

Percentage of patients with a 

platelet count ≥50 x 109/L on ≥4 

weeks during the trial, excluding 

responses within 8 weeks after 

rescue medications  

Durable platelet response Percentage of patients with platelet 

count ≥50 and ≤400 x 109/L on ≥6 of 

the last 8 weeks of treatment, 

excluding subjects who received 

rescue medication* 

Percentage of patients with 

platelet count ≥50 x 109/L on ≥6 

of the last 8 weeks of treatment, 

with no rescue medications at 

any time during the trial 

16 



Statistical Methods for Indirect 
Comparisons 
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Bucher’s Method 
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bp

ap

ab
OR

OR
OR 

)log(OR)log(OR)log(OR bpapab 

Bucher HC, Guytt GH, Griffith LE, Walter SD. The results of direct and indirect treatment comparisons  

in meta-analysis of randomized controlled trials. J.Clin.Epi (1997) 60(6):683-91. 

 



Bayesian metaregression  

• xijk ~ binomial(pijk, nijk), i = 1, 2, 3; j = 1, 2, 3; k = 1, 2 

• logit(pijk) = αi + di(2) (if j = 2) + di(3) (if j = 3) +  (if k = 2) 

• di(2) ~ N(d2, sd
2), i = 1, 2; di(3) ~ N(d3, sd

2), i = 3; sd
2 ~ 

uniform(0, 0.6) 

Where  

- xijk denotes the frequency of platelet response for each trial (i = 1, 2, 3), treatment 
group (j = 1 (placebo), 2 (romiplostim) or 3 (eltrombopag)) and splenectomy group (k = 
1 (non-splenectomised), 2 (splenectomised)).  

- αi = log{pi1k/(1 - pi1k)} denote the fixed “study effect” (the log-odds of response for 
placebo-treated patients) in the i-th trial 

- di(j) denote the “treatment effect” (log OR for romiplostim or eltrombopag versus 
placebo) for each trial 

-  denote the log OR for the effect of splenectomy, which is assumed to be common 
across all trials and treatment types 

19 



Bayesian metaregression (cont.)  

• The model was used to estimate log OR for romiplostim versus placebo (d2) and for 
eltrombopag versus placebo (d3).  

 

• The indirect log OR for eltrombopag versus romiplostim was then estimated from the 
posterior distribution of the difference d3 - d2.  
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Trial Treatment arm Splenectomy status Logit model  

Romiplostim (splenectomised)  placebo splenectomised α1 +  

  active splenectomised α1 +  + d1(2) 

Romiplostim (non-splenectomised)  placebo non-splenectomised α2 

  active non-splenectomised α2 + d2(2) 

Eltrombopag placebo splenectomised α3 +  

  active splenectomised α3 +  + d3(3) 

  placebo non-splenectomised α3 

  active non-splenectomised α3 + d3(3) 



Overall Response – INCORRECT analysis 

 Eltrombopag Placebo  Romiplostim Placebo 

 

Cheng 77/135 (57%) 7/62 (11%) Kuter 33/42 (79%) 0/21 ( 0%) 

   Kuter 36/41 (88%) 3/21 (14%) 

 

Total  77/135 (57%) 7/62 (11%)  69/83 (83%) 3/42 (7%) 
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Unadjusted  Eltrombopag Romiplostim 

 

Overall Response 77/135 (57%) 69/83 (83%) 

 

Odds Ratio  OR=0.27 



Overall Response – Analysis 1 

 Eltrombopag Placebo  Romiplostim Placebo 

 

Cheng 77/135 (57%) 7/62 (11%) Kuter 33/42 (79%) 0/21 ( 0%) 

   Kuter 36/41 (88%) 3/21 (14%) 

 

Total  77/135 (57%) 7/62 (11%)  69/83 (83%) 3/42 (7%) 
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Adjusted  Eltrombopag Romiplostim 

 

Overall Response OR=10.4 OR=64.1 

 

Odds Ratio  OR=0.16 



Overall Response – Analysis 2 

 Eltrombopag Placebo  Romiplostim Placebo 

 

Cheng 77/135 (57%) 7/62 (11%) Kuter 33/42 (79%) 0/21 ( 0%) 

   Kuter 36/41 (88%) 3/21 (14%) 

 

Total  77/135 (57%) 7/62 (11%)  69/83 (83%) 3/42 (7%) 
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Adjusted  Eltrombopag Romiplostim 

 

Overall Response OR=10.4 OR=77.7 

 

Odds Ratio  OR=0.13 

Logistic Regression (Fixed) 



Overall Response – Analysis 3 

 Eltrombopag Placebo  Romiplostim Placebo 

 

Cheng 77/135 (57%) 7/62 (11%) Kuter 33/42 (79%) 0/21 ( 0%) 

   Kuter 36/41 (88%) 3/21 (14%) 

 

Total  77/135 (57%) 7/62 (11%)  69/83 (83%) 3/42 (7%) 
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Adjusted  Eltrombopag Romiplostim 

 

Overall Response OR=10.4 OR=68.4 

 

Odds Ratio  OR=0.15 

Meta-Analysis 



Overall Response – Analysis 4 

 Eltrombopag Placebo  Romiplostim Placebo 

 

Cheng 77/135 (57%) 7/62 (11%) Kuter 33/42 (79%) 0/21 ( 0%) 

   Kuter 36/41 (88%) 3/21 (14%) 

 

Total  77/135 (57%) 7/62 (11%)  69/83 (83%) 3/42 (7%) 
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Adjusted  Eltrombopag Romiplostim 

 

Overall Response OR=10.4 OR=105.8 

 

Odds Ratio  OR=0.10 

Logistic Regression (Random) 



Overall Response – Analysis 5 

 Eltrombopag Placebo  Romiplostim Placebo 

 

Cheng 26/50 (52%) 2/21 (10%) Kuter 33/42 (79%) 0/21 ( 0%) 

  51/85 (60%) 5/41 (12%)  Kuter 36/41 (88%) 3/21 (14%) 

 

Total  77/135 (57%) 7/62 (11%)  69/83 (83%) 3/42 (7%) 
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Adjusted  Eltrombopag Romiplostim 

 

Overall Response OR=11.6 OR=106.1 

 

Odds Ratio  OR=0.11 

Bayesian Network 



Cooper KL et al. (2012): Indirect 
Comparison Results for Overall Platelet 
Response 

OR eltrombopag 

vs placebo  

(95% CI) 

OR romiplostim  

vs placebo  

(95% CI) 

Indirect OR 

eltrombopag  

vs romiplostim  

(95% CI) 

Analysis 1  

(Eltrombopag STA) 
10.4 (4.4, 24.6) 64.1 (17.3, 236.8) 0.16 (0.03, 0.78) 

Analysis 2  

(Eltrombopag ERG report) 
10.4 (4.4, 24.6) 77.7 (19.5, 309.9) 0.13 (0.03, 0.68) 

Analysis 3 (analysis 1 but with 

meta-analysis for pooling 

romiplostim data) 

10.4 (4.4, 24.6) 68.4 (12.8, 365.6) 0.15  (0.02, 1.00) 

Analysis 4 (analysis 2 but with 

random treatment effects and 

logistic regression for pooling 

romiplostim data) 

10.4 (4.4, 24.6) 105.8 (24.6, 598.8) 0.10 (0.02, 0.57) 

Analysis 5  

(Bayesian meta-regression) 
11.6 (4.4, 33.8) 106.1 (25.0, 593.5) 0.11 (0.02, 0.66) 
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Limitations of indirect comparisons 

• Indirect comparisons are viewed as ‘observational 
evidence’ 

• Trials may differ in patient population and trial design 

• Differences in patient characteristics included: 

Characteristic Eltrombopag Romiplostim 

Required to have responded to  

first-line treatment 
Yes No 

Splenectomised patients (%) 36%  50% 

Patients receiving concomitant  ITP 

medications at baseline (%) 
Slightly higher – 

Patients having received ≥3 prior therapies (%) –  Slightly higher 

Patients withdrawing from the study (%) Higher – 

28 



Summary 

• Consistent results were obtained across all of the 
statistical methods explored in this study 

• The Bayesian metaregression approach generated 
similar results to other indirect comparison methods 
and may be considered the most robust of the 
analyses  

• It incorporates all trial data in a single model and 
accounts appropriately for parameter uncertainties 

Cooper KL et al. Int J Technol Assess Health Care. 2012;28:249–258. 29 



NMA METHODOLOGY 
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Sources for data. 

• In the context of this course data values are extracted 
from published papers or internal company reports. 

• They are summary Statistics, or more recently, 
estimated parameters from models. 

• i.e. Not primary data. 

 

• Nearly always they will have been presented within a 
frequentist paradigm. 

•  Estimates, standard errors and perhaps confidence intervals 
and “P-values”. 

2 



Extracting data 

• Extracting data values from a paper is a time 
consuming job that requires skill. 

• Often the required piece of information is hidden in the text. 

• Tables in published papers are often reserved for the “best 
looking” analysis rather than the primary analysis. 

 

• If all published papers followed the CONSORT 
Statement, then life would be much easier. 

 

 
Ref: Schulz KF, Altman DG, Moher D, for the CONSORT Group. CONSORT 2010 Statement: updated guidelines for 

reporting parallel group randomised trials. Trials 2010, 11:32. (24 March 2010) 

 
3 

http://www.trialsjournal.com/content/11/1/32


CONSORT statement 

Item 17a –  

For each primary and secondary outcome, results for each 
group, and the estimated effect size and its precision 
(such as 95% confidence interval). 

 

 
 

 

 

4 
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Exercise therapy (n=65) Control (n=66) 

Adjusted 

difference* 

(95% CI) at 

12 months 

Baseline 

(mean 

(SD)) 

12 months 

(mean 

(SD)) 

Baseline 

(mean 

(SD)) 

12 months 

(mean 

(SD)) 

Function 

score (0-

100) 

64.4 (13.9) 83.2 (14.8) 65.9 (15.2) 79.8 (17.5) 
4.52 (-0.73 

to 9.76) 

Pain at rest 

(0-100) 
4.14 (2.3) 1.43 (2.2) 4.03 (2.3) 2.61 (2.9) 

-1.29 (-

2.16 to -

0.42) 

Pain on 

activity (0-

100) 

6.32 (2.2) 2.57 (2.9) 5.97 (2.3) 3.54 (3.38) 

-1.19 (-

2.22 to -

0.16) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6- Example of reporting of summary results for 
each study group (Continuous outcomes) 

(Adapted from table 3 of van Linschoten(234)) 

 

 

 

 

 

 

 

 

 

 

 

* Function score adjusted for baseline, age, and duration of symptoms. 

 
 

 
 

http://www.consort-statement.org/consort-statement/references0/


Item 17b: Binary outcomes, Explanation 
(my emphasis) 

• When the primary outcome is binary, both the relative 
effect (risk ratio (relative risk) or odds ratio) and the 
absolute effect (risk difference) should be reported 
(with confidence intervals), as neither the relative 
measure nor the absolute measure alone gives a 
complete picture of the effect and its implications. 

 

• Different audiences may prefer either relative or 
absolute risk, .... 

6 



7 

Endpoint 

Number (%) 
Risk difference 

(95% CI) Etanercept 

(n=30) 

Placebo 

(n=30) 

Primary endpoint 

Achieved 

PsARC at 12 

weeks 

26 (87) 7 (23) 63% (44 to 83) 

Secondary endpoint 

Proportion of patients meeting ACR criteria: 

ACR20 22 (73) 4 (13) 60% (40 to 80) 

ACR50 15 (50) 1 (3) 47% (28 to 66) 

ACR70 4 (13) 0 (0) 13% (1 to 26) 

Table 5 - Example of reporting of summary results for 
each study group (binary outcomes)* 

 (Adapted from table 2 of Mease et al(103)) 

http://www.consort-statement.org/consort-statement/references0/
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outcome 

Percentage (No) 

Risk ratio 

(95% CI) 

Risk difference 

(95% CI) 

Early 

administra

tion 

(n=1344) 

Delayed 

selective 

administra

tion 

(n=1346) 

Death or 

oxygen 

dependence 

at “expected 

date of 

delivery” 

31.9 (429) 38.2 (514) 
0.84 (0.75 to 

0.93) 
-6.3 (-9.9 to -2.7) 

Item 17b - For binary outcomes, presentation of both 

absolute and relative effect sizes is recommended 
 

 

Example 

“The risk of oxygen dependence or death was reduced by 16% (95% CI 25% to 7%). The absolute 

difference was -6.3% (95% CI -9.9% to -2.7%); early administration to an estimated 16 babies would 

therefore prevent 1 baby dying or being long-term dependent on oxygen” (also see table 7).(242) 

 

Table 7 - Example of reporting both absolute and relative effect sizes 

(Adpated from table 3 of The OSIRIS Collaborative Group(242)) 

http://www.consort-statement.org/consort-statement/references0/
http://www.consort-statement.org/consort-statement/references0/


• We will return to binary outcomes tomorrow. 

9 



Intention to Treat 

• Usually we will want to extract ITT results from each 
study. 

10 



Intention to Treat (ITT) and Missing Data 

• In a review of 403 RCTs published in 10 leading medical journals in 2002, 
249 (62%) reported the use of intention-to-treat analysis for their primary 
analysis. This proportion was higher for journals adhering to the CONSORT statement (70% v 

48%). Among articles that reported the use of intention-to-treat 
analysis, only 39% actually analysed all participants as randomised, 
with more than 60% of articles having missing data in their primary 
analysis.(221)  

• Other studies show similar findings.(18) (222) (223) Trials with no reported 
exclusions are methodologically weaker in other respects than those that 
report on some excluded participants,(173) strongly indicating that at 
least some researchers who have excluded participants do not report 
it.  

 
Ref: Schulz KF, Altman DG, Moher D, for the CONSORT Group. CONSORT 2010 Statement: updated guidelines for reporting parallel group 

randomised trials. Trials 2010, 11:32. (24 March 2010) 

•  
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http://www.consort-statement.org/consort-statement/references0/
http://www.consort-statement.org/consort-statement/references0/
http://www.consort-statement.org/consort-statement/references0/
http://www.consort-statement.org/consort-statement/references0/
http://www.consort-statement.org/consort-statement/references0/
http://www.trialsjournal.com/content/11/1/32


• We will return to the impact of missing data later. 

12 



Types of data. 

• Usually we would compare treatment effects adjusted 
for baseline.  

• Like lsmeans and their SEs for off-time reduction. 

• Often these are not published and only raw means and 
standard errors are tabled. 

• Sometimes we can reverse calculate SED from P 
values or confidence intervals. 

• Two major forms of extraction: 

1. Absolute mean and SD for each treatment 

• Beware of distinction between SE for mean and SD. 

2. Differences with some measure of precision, often an SED or 
Confidence Interval. 

13 



Types of data. 

• Often need a collection of different strategies. May 
include borrowing information across studies. 

 

• Variability only known in some studies. 

• See Stevens (2013) for formal approach to doing this within 
Bayesian context.  

• This is only one of several possible Bayesian models. 

• Very easy in SAS 9.3 MCMC using new missing data methods. 

 

 
[Stevens, J. 2013. A note on dealing with missing standard errors in meta-analyses of 

continuous outcome measures in WinBUGS. Pharmaceut. Statist. 2011, 10 374–
378] 
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This is the original paper for the previous Normal data 

example. 
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We might extract the raw data means and ignore 

adjustments. 

A: Mean= 83.2   SD=14.8  N=65  

B: Mean= 79.8   SD=17.5  N=66 

 

Difference = 3.40 

Implied SED= √ (14.82/65 + 17.52/66) = 2.83 

Try extracting Function Score 
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Or use adjusted difference 4.52 

Overall mean= (83.2*65 + 79.8*66)/131 = 81.49 

Adjusted means 

A: (81.49 + 4.52*66/131) = 83.77 

B: (81.49 - 4.52*65/131) = 79.25 

 

SED = (9.76 – (-0.73) ) / (2 * 1.96) = 2.68 [2.65 if use T] 

Smaller SED resulting from adjustment (was 2.83). 

 

Effective SE for A is 2.68 * √( 66/131) =1.90. SD for A=15.34 

Effective SE for B is 2.68 * √( 65/131) =1.89. SD for B=15.34 

 



Using the 
P-value. 

• Or extract the SED from the P-value. 

“The difference in function scores at 12 months, however, 
did not reach statistical significance (4.52, 95% CI −0.73 
to 9.76; P=0.09).” 

Assume equal two sided test, 

SED= 4.52 / qnorm(1 - 0.045) = 2.67 

 

Note how few digits are given here (could be P=0.08 or 0.10). 

4.52 / qnorm(1 - 0.040)=2.58 

4.52 / qnorm(1 - 0.050)=2.75 
18 



Data we hand into analysis 

• The data we get from each trial may be either  

• Mean and SD or SE for each arm 

• Difference of means and SEDs. 

 

• Analysis is easiest if form of data going into analysis is 
the same for every trial. 

• Mean and SD or SE for each arm 

• Difference of means and SEDs. Only need comparison to a 
single arm (control?) and not all comparisons. 

 

19 



CASE STUDY WITH NORMAL 
DATA 

20 



• This is a very small network, which we will use as an 
example. 

 

• Usually networks are more extensive. 

21 



Example of network diagram 

22 NICE Decision Support Unit Technical Series Document 1 Introduction to evidence synthesis for decision making 

 

http://www.nicedsu.org.uk/TSD1 Introduction_final_03_02_12.pdf


Parkinson’s example 

23 

•  Mean “off-time” reduction in patients given 

dopamine agonists as adjunct therapy in Parkinson’s 

disease.  

 

•  The available data are the mean, standard 

deviation and number of patients in each trial arm. 

 

•  Seven studies of five different drugs: 

• Placebo, coded 1, 

• Five active drugs coded 2 to 5. 

 
Example from NICE Decision Support Unit Technical Series Document  



The Parkinson’s data 
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Study Treatment y sd n Difference 

[Calculated] 

SE(diff) 

[Calculated] 

1 1 

3 

-1.22 

-1.53 

3.7 

4.28 

54 

95 

 

-0.31 

 

0.668 

2 1 

2 

-0.7 

-2.4 

3.7 

3.4 

172 

173 

 

-1.7 

 

0.383 

3 1 

2 

4 

-0.3 

-2.6 

-1.2 

4.4 

4.3 

4.3 

76 

71 

81 

 

-2.3 

-0.9 

 

0.718 

0.695 

4 3 

4 

-0.24 

-0.59 

3 

3 

128 

72 

 

-0.35 

 

0.442 

5 3 

4 

-0.73 

-0.18 

3 

3 

80 

46 

 

0.55 

 

0.555 

6 4 

5 

-2.2 

-2.5 

2.31 

2.18 

137 

131 

 

-0.3 

 

0.274 

7 4 

5 

-1.8 

-2.1 

2.48 

2.99 

154 

143 

 

-0.3 

 

0.320 

NICE Decision Support Unit Technical Series Document 1 Introduction to evidence synthesis for decision making 

 

http://www.nicedsu.org.uk/TSD1 Introduction_final_03_02_12.pdf


Differences from Standard analysis. 

• Note how the SDs are estimated separately within 
treatment within Study and are not based on pooled 
variance within study. 

• This is quite common in this area when they are extracted from 
summary statistics rather than output from analysis. 

• Comparison of SDs across studies can be interesting. 

25 



Differences from Standard analysis. 

• This example is not adjusted for other covariates 

• That is not adjusted for imbalance in covariate between arms 
within study. 

• Adjusted treatment differences can be used. 

• Impact of changes in covariates between study is a 
different question. 

• That would be important if there is a Treatment by covariate 
interaction. 

• Meta-regression may be possible using summary for trial. 

 

• Often based on Observed Cases, rather than an MAR 
analysis. Often handling of missing data is not 
mentioned in publications (though it should be). 

26 



Seen as an incomplete block design. 

27 

Study/Treatment 1 2 3 4 5 

1 -1.22 -1.53 

2 -0.7 -2.4 

3 -0.3 -2.6 -1.2 

4 -0.24 -0.59 

5 -0.73 -0.18 

6 -2.2 -2.5 

7 -1.8 -2.1 



The Statistical model 

• Simple two-way ANOVA. 

• Study i and Arm k, with Treatment t(i,k) 

 

 

 

• Constraint that δj is zero for a chosen treatment, usually 
δ1 = 0. 

• The notation δ is used here as it represents the 
difference from some reference treatment such as 
placebo, which may not be observed in this i’th trial. 

28 



Useful reference 

• This paper is ideal ammunition for the Statistician in 
explaining how much of indirect comparisons comes 
down to this very simple two-way ANOVA model. 

 

Piepho H. P., Williams E. R., and Madden L. V.. 2012. The Use of 
Two-Way Linear Mixed Models in Multitreatment Meta-Analysis. 
Biometrics. 

DOI: 10.1111/j.1541-0420.2012.01786.x  

 

And they are agricultural Statisticians! 
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All arms and all studies equally precise. 
Not the recommended analysis as not efficient. 
But it is unbiased. 

Two- way ANOVA 

 

proc mixed data=Parkinsons; 

class Study Treatment; 

model Y= Study Treatment /solution outp=Pred; 

id SE Study Treatment; 

lsmeans Treatment / diff=control("1"); 

run; 
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data Parkinsons; 

input Study Treatment Y SD N ; 

Var=SD*SD/N; 

SE=sqrt(Var); 

Weight=1/Var; 

Record=_N_; 

datalines; 

1  1  -1.22    3.7     54 

1  3  -1.53    4.28    95 

2  1   -0.7    3.7    172   

2  2   -2.4    3.4    173 

3  1   -0.3    4.4     76 

3  2   -2.6    4.3     71 

3  4   -1.2    4.3     81 

4  3   -0.24   3      128 

4  4   -0.59   3       72 

5  3   -0.73   3       80 

5  4   -0.18   3       46 

6  4   -2.2    2.31   137 

6  5   -2.5    2.18   131 

7  4   -1.8    2.48   154 

7  5   -2.1    2.99   143 

; 

run; 
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The estimates. Note the d.f. 
                                               Standard 

Effect       Study    Treatment    Estimate       Error      DF    t Value    Pr > |t| 

Intercept                           -2.1000      0.2576       4      -8.15      0.0012 

Study        1                       0.1426      0.4108       4       0.35      0.7460 

Study        2                       0.6705      0.4488       4       1.49      0.2094 

Study        3                       0.7137      0.3691       4       1.93      0.1253 

Study        4                       1.3782      0.3578       4       3.85      0.0183 

Study        5                       1.3382      0.3578       4       3.74      0.0201 

Study        6                      -0.4000      0.2974       4      -1.34      0.2499 

Study        7                            0           .       .        .         . 

Treatment             1              0.8511      0.4316       4       1.97      0.1199 

Treatment             2             -1.0921      0.4628       4      -2.36      0.0777 

Treatment             3              0.3137      0.3979       4       0.79      0.4746 

Treatment             4              0.3000      0.2974       4       1.01      0.3702 

Treatment             5                   0           .       .        .         . 

 

 Differences of Least Squares Means 

                                                    Standard 

Effect       Treatment    _Treatment    Estimate       Error      DF    t Value    Pr > |t| 

Treatment    2            1              -1.9432      0.2895       4      -6.71      0.0026 

Treatment    3            1              -0.5374      0.3201       4      -1.68      0.1685 

Treatment    4            1              -0.5511      0.3127       4      -1.76      0.1528 

Treatment    5            1              -0.8511      0.4316       4      -1.97      0.1199 
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Fixed effect analysis. 

proc mixed data=Parkinsons; 

class Study Treatment; 

model Y= Study Treatment / ddf= 500, 500; 

weight Weight; 

parms 1 / hold=(1); 

lsmeans Treatment / diff=control("1") df=500; 

run; 

 

Note no covariance parameters are estimated. 

Variability is assumed known and fixed (so set denominator d.f. at large value). 
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Type 3 Tests of Fixed Effects 

              Num     Den 

Effect         DF      DF    F Value    Pr > F 

Study           6     500       6.14    <.0001 

Treatment       4     500       7.94    <.0001 

 

                             Least Squares Means 

                                      Standard 

Effect       Treatment    Estimate       Error      DF    t Value    Pr > |t| 

Treatment    1             -0.7445      0.3443     500      -2.16      0.0311 

Treatment    2             -2.5561      0.3981     500      -6.42      <.0001 

Treatment    3             -1.2226      0.2546     500      -4.80      <.0001 

Treatment    4             -1.2685      0.2056     500      -6.17      <.0001 

Treatment    5             -1.5685      0.2727     500      -5.75      <.0001 

 

                            Differences of Least Squares Means 

                                                    Standard 

Effect       Treatment    _Treatment    Estimate       Error      DF    t Value    Pr > |t| 

Treatment    2            1              -1.8116      0.3327     500      -5.45      <.0001 

Treatment    3            1              -0.4781      0.4866     500      -0.98      0.3263 

Treatment    4            1              -0.5240      0.4786     500      -1.09      0.2741 

Treatment    5            1              -0.8240      0.5220     500      -1.58      0.1151 
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Mean and 95% CI for difference from Treatment 1. 
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Is this correct? 

• We could rebuild the original data (subject data within 
each trial) and analyze that. 

 

• Within each arm place data at either 

(Mean + Delta) or (Mean - Delta) 

where delta = SD √((n-1)/n). 
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* Generate full data; 

data Full; 

set Parkinsons; 

keep FullRec Study Treatment Response; 

retain FullRec 0; 

drop i; 

M=N; 

* Handle case of N being odd; 

if mod(n,2) then do; 

 Response=Y; 

 FullRec=FullRec+1; 

 output; 

 M=M-1; 

end; 

Delta=SD*sqrt((N-1)/M); 

do i=1 to M; 

 Response=Y+Delta; 

 FullRec=FullRec+1; 

 output; 

 Delta=-Delta; 

end; 

run; 
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Tabulate mean and SD as check. 

Response 

„ƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ† 

‚        ‚                              Treatment                              ‚ 

‚        ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒ‰ 

‚        ‚      1      ‚      2      ‚      3      ‚      4      ‚      5      ‚ 

‚        ‡ƒƒƒƒƒƒ…ƒƒƒƒƒƒˆƒƒƒƒƒƒ…ƒƒƒƒƒƒˆƒƒƒƒƒƒ…ƒƒƒƒƒƒˆƒƒƒƒƒƒ…ƒƒƒƒƒƒˆƒƒƒƒƒƒ…ƒƒƒƒƒƒ‰ 

‚        ‚ Mean ‚ Std  ‚ Mean ‚ Std  ‚ Mean ‚ Std  ‚ Mean ‚ Std  ‚ Mean ‚ Std  ‚ 

‡ƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒ‰ 

‚Study   ‚      ‚      ‚      ‚      ‚      ‚      ‚      ‚      ‚      ‚      ‚ 

‡ƒƒƒƒƒƒƒƒ‰      ‚      ‚      ‚      ‚      ‚      ‚      ‚      ‚      ‚      ‚ 

‚1       ‚ -1.22‚  3.70‚     .‚     .‚ -1.53‚  4.28‚     .‚     .‚     .‚     .‚ 

‡ƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒ‰ 

‚2       ‚ -0.70‚  3.70‚ -2.40‚  3.40‚     .‚     .‚     .‚     .‚     .‚     .‚ 

‡ƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒ‰ 

‚3       ‚ -0.30‚  4.40‚ -2.60‚  4.30‚     .‚     .‚ -1.20‚  4.30‚     .‚     .‚ 

‡ƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒ‰ 

‚4       ‚     .‚     .‚     .‚     .‚ -0.24‚  3.00‚ -0.59‚  3.00‚     .‚     .‚ 

‡ƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒ‰ 

‚5       ‚     .‚     .‚     .‚     .‚ -0.73‚  3.00‚ -0.18‚  3.00‚     .‚     .‚ 

‡ƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒ‰ 

‚6       ‚     .‚     .‚     .‚     .‚     .‚     .‚ -2.20‚  2.31‚ -2.50‚  2.18‚ 

‡ƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒƒƒƒ‰ 

‚7       ‚     .‚     .‚     .‚     .‚     .‚     .‚ -1.80‚  2.48‚ -2.10‚  2.99‚ 

Šƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒƒƒƒŒ 
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Analysis model 

proc mixed data=Full; 

class Study Treatment; 

model Response=Study Treatment /ddfm=kr; 

lsmeans Treatment / diff=control("1"); 

repeated /subject=FullRec group=Study*Treatment; 

run; 

 

Note the unusual use of separate variances. 
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Individual variance for each Study*Arm 

 Covariance Parameter Estimates 

Cov Parm     Subject    Group                  Estimate 

Residual     FullRec    Study*Treatment 1 1     13.6307 

Residual     FullRec    Study*Treatment 1 3     18.2842 

Residual     FullRec    Study*Treatment 2 1     13.6831 

Residual     FullRec    Study*Treatment 2 2     11.5551 

Residual     FullRec    Study*Treatment 3 1     19.3198 

Residual     FullRec    Study*Treatment 3 2     18.4157 

Residual     FullRec    Study*Treatment 3 4     18.4421 

Residual     FullRec    Study*Treatment 4 3      9.0001 

Residual     FullRec    Study*Treatment 4 4      9.0004 

Residual     FullRec    Study*Treatment 5 3      9.0203 

Residual     FullRec    Study*Treatment 5 4      9.0626 

Residual     FullRec    Study*Treatment 6 4      5.3275 

Residual     FullRec    Study*Treatment 6 5      4.7449 

Residual     FullRec    Study*Treatment 7 4      6.1414 

Residual     FullRec    Study*Treatment 7 5      8.9180 

 

Effectively recovered just the SD2 for each combination. 
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Very nearly the same 

 Differences of Least Squares Means 

 

                                                    Standard 

Effect       Treatment    _Treatment    Estimate       Error      DF    t Value    Pr > |t| 

Treatment    2            1              -1.8118      0.3338     490      -5.43      <.0001 

Treatment    3            1              -0.4774      0.4899     334      -0.97      0.3305 

Treatment    4            1              -0.5244      0.4819     364      -1.09      0.2772 

Treatment    5            1              -0.8244      0.5252     503      -1.57      0.1171 
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Back to using summary data. 
What happens if I forget to use HOLD? 

proc mixed data=Parkinsons ; 

class Study Treatment; 

model Y= Study Treatment / ddfm=kr; 

weight weight; 

lsmeans treatment / diff=control("1"); 

run; 

 

42 



Standard errors are too small.  

  Differences of Least Squares Means 

 

                                                    Standard 

Effect       Treatment    _Treatment    Estimate       Error      DF    t Value    Pr > |t| 

 

Treatment    2            1              -1.8116      0.2516       4      -7.20      0.0020 

Treatment    3            1              -0.4781      0.3680       4      -1.30      0.2637 

Treatment    4            1              -0.5240      0.3620       4      -1.45      0.2213 

Treatment    5            1              -0.8240      0.3948       4      -2.09      0.1052 

 

• Variability has been assessed from the between arm and study. So is 
too small here. 

 

• Often the standard errors will be too large. 

 

• Code looks sensible so beware! 
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Using GENMOD for the correct analysis 

proc genmod data=Parkinsons; 

class Study Treatment; 

model Y= Study Treatment / dist=normal noscale; 

weight Weight; 

Lsmeans Treatment / diff=control("1"); 

run; 

• The NOSCALE option means that a scale parameter 
(residual) is not estimated but fixed at 1. 
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Same results using GENMOD. 

 Differences of Treatment Least Squares Means 

 

                                       Standard 

Treatment    _Treatment    Estimate       Error    z Value    Pr > |z| 

 

2            1              -1.8116      0.3327      -5.45      <.0001 

3            1              -0.4781      0.4866      -0.98      0.3259 

4            1              -0.5240      0.4786      -1.09      0.2736 

5            1              -0.8240      0.5220      -1.58      0.1144 
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Note on use of GENMOD 

• GENMOD uses maximum likelihood rather than REML. 

• Not an issue here as we are not estimating the residual. 
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Summary  
[Normal data: Fixed effects – Frequentist] 

• Use summary values and assume variances fixed and 
known (do not estimate any covariance paramaters). 

• Use WEIGHT. 

• Use PARMS and HOLD with MIXED or GLIMMIX, or NOSCALE 
with GENMOD. 
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The dark side! 

 

 

Going Bayesian ... 
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Why Bayesian? 

• Today we will develop Bayesian solutions for the 
Normal case. 

 

• Three reasons 

1. Many of the methods being promulgated, especially for Binary 
data are Bayesian. 

2. It provides a way to handle the heterogeneity when it is not 
well estimated from within the meta-analysis. 

3. It provides a way to fit complex hierarchical models which 
have been difficult to fit within a maximum likelihood paradigm 
(see tomorrow). 
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The NICE results (Bayesian) 
Flat conjugate priors. Bound to be the same for Fixed effects! 
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NICE Winbugs code (Fixed effects model). 
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# Normal likelihood, identity link 

# Fixed effects model for multi-arm trials 

model{  

for(i in 1:ns){ 

 mu[i] ~ dnorm(0,.0001) # vague priors for all trial baselines 

 for (k in 1:na[i]) {  

  var[i,k] <- pow(se[i,k],2)     # calculate variances 

  prec[i,k] <- 1/var[i,k]     # set precisions 

  y[i,k] ~ dnorm(theta[i,k],prec[i,k])    # normal likelihood 

  theta[i,k] <- mu[i] + d[t[i,k]] - d[t[i,1]]  Unecessary complication  # model for linear predictor 

  dev[i,k] <- (y[i,k]-theta[i,k])*(y[i,k]-theta[i,k])*prec[i,k]   #Deviance contribution 

 } 

 resdev[i] <- sum(dev[i,1:na[i]]) # summed residual deviance contribution for this trial 

} 

totresdev <- sum(resdev[])     #Total Residual Deviance 

d[1]<-0      # treatment effect is zero for reference treatment 

for (k in 2:nt){ d[k] ~ dnorm(0,.0001) }    # vague priors for treatment effects 

} 



Easy Bayes in SAS. 
Same GENMOD as before. 

proc genmod data=Parkinsons; 

class Study Treatment; 

model Y= Study Treatment / dist=normal noscale; 

bayes seed=1352 STATS(alpha=0.05 percent=2.5 25 50 
75 97.5 )=all; 

weight Weight; 

lsmeans Treatment / diff=control("1"); 

run;. 
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Mean and SD of posterior are very similar to ML. 
Based on MCMC sample. 
Theory says they are the same for one specific prior. 

 Sample Differences of Treatment Least Squares Means 

 

                                                 Standard    -----------------------Percentiles---------------------- 

Treatment    _Treatment        N    Estimate    Deviation       2.5th        25th        50th        75th      97.5th 

 

2            1             10000     -1.8150       0.3324     -2.4513     -2.0403     -1.8141     -1.5887     -1.1645 

3            1             10000     -0.4867       0.4900     -1.4420     -0.8164     -0.4862     -0.1600      0.4780 

4            1             10000     -0.5302       0.4798     -1.4703     -0.8534     -0.5367     -0.2028      0.4055 

5            1             10000     -0.8302       0.5220     -1.8638     -1.1793     -0.8337     -0.4734      0.1946 

 

These are summaries of the sampled posterior distribution. 
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Markov Chain Monte Carlo (MCMC) 
Sample from the posterior. 

• When we use MCMC to solve a Bayesian problem we 
get a sample from the posterior distribution. 

• It is only a sample, so run it again (new seed) and you get a 
different sample. 

• Need to worry about Markov Chain error (accuracy of our 
statistics). 

• The sample is usually autocorrelated. 

 

• We estimate the real properties of the posterior 
distribution from the sample. 

• Sample mean for mean of posterior. 

• Sample percentiles estimate percentiles for posterior 
distribution, such as median. 
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Sample from the posterior. 

 

• For any statistic derived from the model parameters, 
we calculate the value for each member of the sample, 
and we have a sample from its posterior. 

• Odds ratio from parameters in logistic model. 

• Log(HR) from Hazard Ratio. 

 

• Important to realize that the Markov chain is stepping 
around in the parameter space, and the frequency of 
times it chooses a point is proportional to the posterior 
probability. 

• Unlike Winbugs the Metropolis-Hastings algorithm in the MCMC 
procedure can repeat a point in the parameter space. 
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GENMOD can spot Conjugancy. 
This allows direct sampling. 
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Understanding the Diagnostic plots 
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• Trace Plots 

• Is the chain stationary and mixing? 

• Constant mean, constant variance. 

• Moving around the parameter space freely. 

• Moving rapidly between extremes. 

What you do not 

want! 

    



Diagnostic plots 
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• Autocorrelation 

• Measures the correlation between each draw and its 
kth lag. 

• The further the lag from the original measure the 
smaller you expect the correlation to be. 

• High correlation between distant draws suggests 
poor mixing. 



Diagnostic plots 
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• Density estimate 

• This is a Kernel density estimate, and will behave 
badly at a boundary. 

• So use with care for Variances and SDs., especially 
variance components, where likelihood may be 
increasing at the boundary. 

 [Later we show how to use SGPLOT to get a better 
picture.] 



The MCMC procedure in SAS. 

• Here we introduce the MCMC procedure in SAS. 

 

• It is important which version of SAS you are using.  

• SAS 9.2 Make sure you are using Level 2M3. 

• SAS 9.3 Has many new features that make coding easier, and 
the procedure run faster. 

 

• It basically does the things that Winbugs does, but in a 
slightly different way. 
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More difficult Bayesian solution in SAS. 
The MCMC procedure. (SAS 9.2) 

ods graphics on; 

proc mcmc data=Parkinsons ntu=1000 nmc=200000  thin=20 seed=246810; 

array P_Study[7] P_Study1-P_Study7; 

array P_Treat[5] P_Treat1-P_Treat5; 

parms P_Study1-P_Study7 0; 

parms P_Treat2-P_Treat5 0; 

prior P_Study1-P_Study7 ~ general(0); 

prior P_Treat2-P_Treat5 ~ general(0); 

p_Treat[1]=0; 

mu=  P_Study[Study] + P_Treat[Treatment] ; 

model Y ~ normal(mean=Mu, sd=SE); 

run; 

• Note the similarity to NLMIXED code. / See next slide(s)  
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Declare the fixed effects parameters 
and constraint 
ods graphics on; 

proc mcmc data=Parkinsons ntu=1000 nmc=200000  thin=20 seed=246810; 

array P_Study[7] P_Study1-P_Study7; 

array P_Treat[5] P_Treat1-P_Treat5; 

parms P_Study1-P_Study7 0; 

parms P_Treat2-P_Treat5 0; 

prior P_Study1-P_Study7 ~ general(0); 

prior P_Treat2-P_Treat5 ~ general(0); 

p_Treat[1]=0; 

mu=  P_Study[Study] + P_Treat[Treatment] ; 

model Y ~ normal(mean=Mu, sd=SE); 

run; 

• Set fixed effects constraint with treat effect for treatment 1 as zero. 
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Set priors 

ods graphics on; 

proc mcmc data=Parkinsons ntu=1000 nmc=200000  thin=20 seed=246810; 

array P_Study[7] P_Study1-P_Study7; 

array P_Treat[5] P_Treat1-P_Treat5; 

parms P_Study1-P_Study7 0; 

parms P_Treat2-P_Treat5 0; 

prior P_Study1-P_Study7 ~ general(0); 

prior P_Treat2-P_Treat5 ~ general(0); 

p_Treat[1]=0; 

mu=  P_Study[Study] + P_Treat[Treatment] ; 

model Y ~ normal(mean=Mu, sd=SE); 

run; 

• general(0) is a completely flat (improper) prior. 
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Declare the model 

ods graphics on; 

proc mcmc data=Parkinsons ntu=1000 nmc=200000  thin=20  seed=246810; 

array P_Study[7] P_Study1-P_Study7; 

array P_Treat[5] P_Treat1-P_Treat5; 

parms P_Study1-P_Study7 0  P_Treat2-P_Treat5 0; 

prior P_Study1-P_Study7 ~ general(0); 

prior P_Treat2-P_Treat5 ~ general(0); 

P_Treat[1]=0; 

Mu=  P_Study[Study] + P_Treat[Treatment] ; 

model Y ~ normal(mean=Mu, sd=SE); 

run; 
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10,000 with a thin of 20 is not enough 
... if you want to report to 2 decimal places 
 Posterior Summaries 

                                      Standard               Percentiles 

Parameter           N        Mean    Deviation         25%         50%         75% 

P_Study1        10000     -1.1245       0.4159     -1.4084     -1.1312     -0.8414 

P_Study2        10000     -0.6371       0.2662     -0.8143     -0.6393     -0.4578 

P_Study3        10000     -0.5921       0.3530     -0.8336     -0.5965     -0.3536 

P_Study4        10000      0.1083       0.4840     -0.2208      0.0973      0.4330 

P_Study5        10000     -0.0563       0.5104     -0.4146     -0.0583      0.2862 

P_Study6        10000     -1.7022       0.4784     -2.0333     -1.7093     -1.3812 

P_Study7        10000     -1.3051       0.4808     -1.6367     -1.3090     -0.9880 

P_Treat2        10000     -1.8144       0.3427     -2.0448     -1.8149     -1.5870 

P_Treat3        10000     -0.4607       0.4661     -0.7695     -0.4526     -0.1419 

P_Treat4        10000     -0.4980       0.4491     -0.7965     -0.4916     -0.1933 

P_Treat5        10000     -0.7965       0.4908     -1.1301     -0.7895     -0.4592 

 

Monte Carlo Standard Errors 

                          Standard 

Parameter        MCSE    Deviation     MCSE/SD 

P_Treat2      0.00946       0.3427      0.0276 

P_Treat3       0.0374       0.4661      0.0803 

P_Treat4       0.0335       0.4491      0.0745 

P_Treat5       0.0351       0.4908      0.0716 
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100,000 with a thin of 20... 
 Posterior Summaries 

                                      Standard               Percentiles 

Parameter           N        Mean    Deviation         25%         50%         75% 

P_Study1       100000     -1.1335       0.4335     -1.4275     -1.1326     -0.8424 

P_Study2       100000     -0.6411       0.2612     -0.8166     -0.6404     -0.4646 

P_Study3       100000     -0.5967       0.3652     -0.8439     -0.5969     -0.3504 

P_Study4       100000      0.1119       0.5107     -0.2331      0.1155      0.4615 

P_Study5       100000     -0.0510       0.5375     -0.4150     -0.0484      0.3170 

P_Study6       100000     -1.6947       0.5178     -2.0404     -1.6923     -1.3453 

P_Study7       100000     -1.2941       0.5182     -1.6401     -1.2922     -0.9446 

P_Treat2       100000     -1.8081       0.3324     -2.0325     -1.8078     -1.5846 

P_Treat3       100000     -0.4628       0.4924     -0.8006     -0.4662     -0.1291 

P_Treat4       100000     -0.5068       0.4866     -0.8377     -0.5085     -0.1814 

P_Treat5       100000     -0.8056       0.5313     -1.1658     -0.8078     -0.4506       

 

Monte Carlo Standard Errors 

                          Standard 

Parameter        MCSE    Deviation     MCSE/SD 

P_Treat2      0.00241       0.3324     0.00725 

P_Treat3      0.00927       0.4924      0.0188 

P_Treat4       0.0100       0.4866      0.0206 

P_Treat5       0.0106       0.5313      0.0200 
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Treatment 5 – Treatment 1 
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Other ways to improve the MCSE 

• Different method for the proposal distribution. 

• propcov=quanew on MCMC statement. 

 

• Modify the arrangement of parameters into blocks using 
the PARMS statements. 

 

• Idea is to reduce the autocorrelation. 
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10,000 only, using propcov=quanew and 
a single PARMS statement 

parms P_Study1-P_Study7 0  P_Treat2-P_Treat5 0;  
 

Monte Carlo Standard Errors 

                          Standard 

Parameter        MCSE    Deviation     MCSE/SD 

P_Study1      0.00594       0.4299      0.0138 

P_Study2      0.00373       0.2643      0.0141 

P_Study3      0.00492       0.3602      0.0137 

P_Study4      0.00750       0.5075      0.0148 

P_Study5      0.00734       0.5284      0.0139 

P_Study6      0.00705       0.5082      0.0139 

P_Study7      0.00744       0.5133      0.0145 

P_Treat2      0.00445       0.3321      0.0134 

P_Treat3      0.00713       0.4872      0.0146 

P_Treat4      0.00695       0.4824      0.0144 

P_Treat5      0.00749       0.5240      0.0143 

Bayesian often look to have MCSE/SD < 0.05. 
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Single PARMS and propcov=QUANEW 
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MCMC in SAS 9.3 
Random statement makes code very easy! 

proc mcmc data=Parkinsons nmc=200000 thin=20 
seed=246810; 

random Studyeffect ~general(0) subject=Study init=(0); 

random Treat ~general(0) subject=Treatment  init=(0) 
zero=first  monitor=(Treat); 

Mu=  Studyeffect + Treat ; 

model Y ~ normal(mean=Mu, sd=SE); 

run; 

• A fixed effect is same as a random effect with fixed 
distribution (no parameters). 

• Note. No need to know the number of levels. 
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Using RANDOM. MCSE not as good. 
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Posterior Summaries 

Parameter N Mean Standard 

Deviation 

Percentiles 

25% 50% 75% 

Treat_3 10000 -0.4404 0.4788 -0.7605 -0.4360 -0.1178 

Treat_2 10000 -1.8053 0.3304 -2.0297 -1.8030 -1.5815 

Treat_4 10000 -0.4856 0.4731 -0.8029 -0.4833 -0.1696 

Treat_5 10000 -0.7887 0.5151 -1.1272 -0.7894 -0.4423 

Monte Carlo Standard Errors 

Parameter MCSE Standard 

Deviation 

MCSE/SD 

Treat_3 0.0181 0.4788 0.0378 

Treat_2 0.00419 0.3304 0.0127 

Treat_4 0.0204 0.4731 0.0431 

Treat_5 0.0216 0.5151 0.0419 
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Summary  
[Normal data: Fixed effects – Bayesian] 

• In SAS use the GENMOD procedure if you do not have 
any additional random effects. 

 

• Theory says that with uninformative conjugate priors the 
results are identical to those from frequentist analysis. 

• Posterior means/medians match M.L estimates. 

• Credibility intervals match confidence intervals. 
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RANDOM EFFECTS MODEL 
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“Random effects” model 

• Now we introduce the what is called the “random 
effects” model. 

• Up until now the estimated overall treatment effect, 
estimates the average effect across this set of studies 
weighted by the size of each study. 

• If effect is same in all studies then this is a valid estimator. 

• If the effects (treatment differences) vary from study then this is 
still a valid estimator for this exact weighting of the individual 
differences in each trial.  

• Here we will look at a more general average across 
studies. 

• We introduce additional variability at the study level in 
terms of the average treatment effects. 
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The Statistical model 

• Add random effect  

• Study i and Arm k, with Treatment t(i,k) 

 

 

 

where ηik has zero mean, independent between studies 
with 

Cov( ηik , ηih ) = ωkh 
 

[See Jones B, Roger J, Lane PW, Lawton A, Fletcher C, Cappelleri JC et al. Statistical approaches for conducting 

network meta-analysis in drug development, Pharmaceutical Statistics 2011, 10, 523-531 ] 
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The Statistical model 
Usually cannot estimate the many parameters ωkh. 

• Symmetry is assumed leading to two possible options 

where the i’th study has mi arms (Ω is mi by mi). 

1) ωkk  =  σ2/2  and  ωkh  =  0  if k≠h.  

this is a simple diagonal matrix. 

 

2) ωkk  =  (mi -1) σ2/2mi  =  σ2/2 - σ2/2mi 

 and  ωkh  =  - σ2/2mi  if k≠h. 

In this case Ω is not of full rank and  

Var (η1 + η2 + ... + ηmi)  =  0. 
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The Variance-covariance matrix Omega. 

• In both cases we have 

  Var(ηk - ηh)= σ2  

 which is stable across studies however big. 

 

• Model 1 is identical to Model 2 with additional simple 
random Study effect with variance σ2/2m for a study 
with m arms. 

• This is important when we decide whether solutions using (1) or 
(2) are equivalent or not. 
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The two forms. 

• For 2 and 3 arm trials 

 

                        (1)                                   (2) 
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Means of the random effects within 
Study  are aliased with the fixed effect 
for Study. 

• Second version of Omega is obtained by simply 
subtracting the mean off the random effects within each 
trial. 

 

 

 

• Option (1) has random effect on top of fixed effect. 

• Option (2) obviates this complication for estimation. 
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• See Piepho H. P., Williams E. R., and Madden L. V.. 
2012. The Use of Two-Way Linear Mixed Models in 
Multitreatment Meta-Analysis. Biometrics. 

 for clear details of situations where these are 
equivalent. 

 

Also contains useful references to early work, such as 

De Hoog, F. R., Speed, T. P., and Williams, E. R. (1990). On a matrix 

identity associated with generalized least squares. Linear Algebra 

and its Applications 127, 449–456.  
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Easy way to use model (1) 
 

• Use same approach as the Fixed effect model but add a 
random effect on every observation. 

 

• Two possible ways ... 

• Fixed on RANDOM statement and estimated on REPEATED 
statement. 

• Vice-versa. 
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Specify known variances on RANDOM 

 

proc mixed data= Parkinsons; 

class Study Treatment Record; 

model  Y = Study Treatment  /solution  ddfm=kr ; 

random SE / subject=Study*Treatment; 

parms 1 1 / HOLD=(1); 

lsmeans Treatment / diff=control("1"); 

run; 
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Specify known variances on REPEATED 

 

proc mixed data=Parkinsonstimes4 ; 

class Study Treatment; 

model Y= Study Treatment / solution ddfm=kr; 

random intercept /subject=Study*Treatment ; 

parms 1 1 / hold=(2); 

weight Weight; 

lsmeans Treatment / diff=control("1"); 

run; 
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There is no heterogeneity in these data. 
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Covariance Parameter Estimates 

Cov Parm Subject Estimate 

Intercept Study*Treatment 0 

Residual   1.0000 

 

 

Covariance Parameter Estimates 

Cov Parm Subject Estimate 

SE Study*Treatment 1.0000 

Residual   0 



Easy way to use model (2) 
... either frequentist or Bayesian. 

• Within each Study set up three (maximum number of 
arms per study) random effects and then use weighted 
sums using weights  

• (1-1/m) / √2     on the diagonal 

• (-1/m) / √2       off the diagonal 

 where m is number of arms for this study. 

 

• Var= σ2 [(1-1/m)2/2+ (m-1)/2m2] =(m-1)σ2/2m 

• Covariance= σ2 [( -2*(2(1-1/m) /m) + (m-2)2/m2] = -2σ2/m 

as required. 

Weights ... 

If m=2: [ 1/2 , - 1/2, 0 ] /√2  and [ - 1/2 , 1/2, 0 ]/√2 

If m=3: [ 2/3, -1/3, -1/3]/√2,   [ -1/3, 2/3, -1/3]/√2,   etc. 
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Easy way to use model (2) 
... either frequentist or Bayesian. 

data Revised_data; 

set Parkinsons; 

by Study; 

array x[3]x1-x3; 

retain index; 

drop i; 

if  first.study  then index=0; 

index=index+1; 

do i=1 to 3; 

 if i<= narm then x[i]=( (i=index) - (1/narm) ) / sqrt(2); 

 else x[i]=0; 

end; 

run; 

• (1-1/m) / √2     on the diagonal 

• (-1/m) / √2       off the diagonal 

 88 



Weights X1, X2 and X3 

89 

 

 

 

 

 

 

 

 

Record Study Treatmen

t 

Narm x1 x2 x3 index 

1 1 1 2 0.35 -0.35 0.00 1 

2 1 3 2 -0.35 0.35 0.00 2 

3 2 1 2 0.35 -0.35 0.00 1 

4 2 2 2 -0.35 0.35 0.00 2 

5 3 1 3 0.47 -0.24 -0.24 1 

6 3 2 3 -0.24 0.47 -0.24 2 

7 3 4 3 -0.24 -0.24 0.47 3 

8 4 3 2 0.35 -0.35 0.00 1 

9 4 4 2 -0.35 0.35 0.00 2 

10 5 3 2 0.35 -0.35 0.00 1 

11 5 4 2 -0.35 0.35 0.00 2 

12 6 4 2 0.35 -0.35 0.00 1 

13 6 5 2 -0.35 0.35 0.00 2 

14 7 4 2 0.35 -0.35 0.00 1 

15 7 5 2 -0.35 0.35 0.00 2 



Easy way to use model (2) 
... either frequentist or Bayesian. 

proc mixed data=Revised_Data; 

class Study Treatment; 

Model Y =Study Treatment / ddfm=kr; 

random X1 X2 X3/ subject=study type=toep(1); 

weight Weight; 

parms 1 1 /hold=(2); 

lsmeans Treatment / diff=control("1“); 

 run; 

 

Not TYPE=VC would have separate variances and be wrong. 
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ML estimate of random effect variance is zero. 

91 

Covariance Parameter Estimates 

Cov Parm Subject Estimate 

Variance Study 0 

Residual   1.0000 



REML 

• By conditioning on the estimators of the fixed effect 
parameters, the REML likelihoods are the same for (1) 
and (2). 

• So estimates and their SEs are the same. 

 

• Similarly, Bayesian analysis with flat priors for Study 
fixed effects give identical posteriors for the two different 
Omega models.  

 

92 



Using proc MIXED on full data set 
Model (1) using REML. 

proc mixed data=Full; 

class Study Treatment; 

model Response=Study Treatment /ddfm=kr; 

lsmeans Treatment / diff=control("1"); 

random Treatment / subject=Study; 

repeated /subject=FullRec group=Study*Treatment; 

run; 

• [e.g. Whitehead §5.8.2] 

random Treatment * Study; 

random Treatment / subject=Study; 

random Intercept  / subject=Treatment*Study;   All three are equivalent 
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There is no extra variability at study level. 

Covariance Parameter Estimates 

Cov Parm            Subject    Group                  Estimate 

Study*Treatment                                              0 

Residual            FullRec    Study*Treatment 1 1     13.6307 

Residual            FullRec    Study*Treatment 1 3     18.2842 

Residual            FullRec    Study*Treatment 2 1     13.6831 

Residual            FullRec    Study*Treatment 2 2     11.5551 

Residual            FullRec    Study*Treatment 3 1     19.3197 

Residual            FullRec    Study*Treatment 3 2     18.4155 

Residual            FullRec    Study*Treatment 3 4     18.4420 

Residual            FullRec    Study*Treatment 4 3      9.0001 

Residual            FullRec    Study*Treatment 4 4      9.0005 

Residual            FullRec    Study*Treatment 5 3      9.0203 

Residual            FullRec    Study*Treatment 5 4      9.0621 

Residual            FullRec    Study*Treatment 6 4      5.3275 

Residual            FullRec    Study*Treatment 6 5      4.7449 

Residual            FullRec    Study*Treatment 7 4      6.1413 

Residual            FullRec    Study*Treatment 7 5      8.9179 
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No observable variation at Study level 

• Frequentist accepts this and effectively opts for the 
Fixed effects analysis. 

 

• The Bayesian believes his prior and carries on. 

 

• Note there were only 4 d.f. to estimate this study level 
variation. 
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Lots of fixed effect parameters 
... but little data.  
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Study/Treatment 1 2 3 4 5 Margin 

1 -1.22 -1.53 μ1 

2 -0.7 -2.4 μ2 

3 -0.3 -2.6 -1.2 μ3 

4 -0.24 -0.59 μ4 

5 -0.73 -0.18 μ5 

6 -2.2 -2.5 μ6 

7 -1.8 -2.1 μ7 

Margin δ1=0 δ2 δ3 δ4 δ5 



Profile likelihood for Variance. 

97 
Code for this plot supplied in course materials. 



Profile likelihood for SD. 

98 
Code for this plot supplied in course materials. 



Version (1) of Omega matrix. 

• Same model as for fixed effect except that 

Var(Yik) = seik
2 + σ2/2 

where 

seik
2 is known and σ2 needs to be estimated. 
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Priors for SD or Variance 

• For a Bayesian model we need prior for σ2 

Uniform for SD is commonly used for variance 
components which are not at lowest stratum level. 

dσ = σ d(log σ) = d(σ2)/2σ 

MCMC procedure: 

Prior sd ~ general(0)  OR 

prior  sd ~ uniform(0.001,5) 

Winbugs: 

sd ~ dunif(0,5) 
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Note how flat prior on SD will average over range 0 up 
to about 0.3. 

101 
Code for this plot supplied in course materials. 



With flat SD prior, this is what we integrate over. 
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Winbugs 

• Most available code uses version (2) of Ω matrix. 

 

• But this is not necessary with flat priors for the study 
effects and linear link function. 
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Winbugs code from Nice for random 
effects. 
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Sofia Dias, Nicky J Welton, Alex J Sutton, AE Ades. 



# Normal likelihood, identity link.   Random effects model for multi-arm trials 

model{ # *** PROGRAM STARTS 

for(i in 1:ns){ # LOOP THROUGH STUDIES 

 w[i,1] <- 0 # adjustment for multi-arm trials is zero for control arm 

 delta[i,1] <- 0 # treatment effect is zero for control arm 

 mu[i] ~ dnorm(0,.0001) # vague priors for all trial baselines 

 for (k in 1:na[i]) { # LOOP THROUGH ARMS 

  var[i,k] <- pow(se[i,k],2) # calculate variances 

  prec[i,k] <- 1/var[i,k] # set precisions 

  y[i,k] ~ dnorm(theta[i,k],prec[i,k]) # normal likelihood 

  theta[i,k] <- mu[i] + delta[i,k] # model for linear predictor 

  dev[i,k] <- (y[i,k]-theta[i,k])*(y[i,k]-theta[i,k])*prec[i,k] #Deviance contribution 

 } 

 resdev[i] <- sum(dev[i,1:na[i]]) # summed residual deviance contribution for this trial 

 for (k in 2:na[i]) {    This is over complicated! 

  delta[i,k] ~ dnorm(md[i,k],taud[i,k]) # trial-specific LOR distributions 

  md[i,k] <- d[t[i,k]] - d[t[i,1]] + sw[i,k] # mean of treat effects distributions (with multi-arm trial correction) 

  taud[i,k] <- tau *2*(k-1)/k # precision of treat effects distributions (with multi-arm trial correction) 

  w[i,k] <- (delta[i,k] - d[t[i,k]] + d[t[i,1]]) # adjustment for multi-arm RCTs 

  sw[i,k] <- sum(w[i,1:k-1])/(k-1) # cumulative adjustment for multi-arm trials 

 } } 

totresdev <- sum(resdev[]) #Total Residual Deviance 

d[1]<-0 # treatment effect is zero for reference treatment 

for (k in 2:nt){ d[k] ~ dnorm(0,.0001) } # vague priors for treatment effects 

sd ~ dunif(0,5) # vague prior for between-trial SD. 

tau <- pow(sd,-2) # between-trial precision = (1/between-trial variance) 
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Much simpler code, subtracting mean 
random effect (effectively Omega (2)). 

# Normal likelihood, identity link 

# Random effects model for multi-arm trials 

model{ #  

for(i in 1:ns){  

  mu[i] ~ dnorm(0,.0001) # vague priors for all trial baselines 

  for (k in 1:na[i]) {  

    var[i,k] <- pow(se[i,k],2) # calculate variances 

    prec[i,k] <- 1/var[i,k] # set precisions 

    y[i,k] ~ dnorm(theta[i,k],prec[i,k]) # normal likelihood 

    theta[i,k] <- mu[i] + d[t[i,k]]  +delta[i,k] - dsum[i] # model for linear predictor 

 delta[i,k] ~ dnorm(0,tau) 

    dev[i,k] <- (y[i,k]-theta[i,k])*(y[i,k]-theta[i,k])*prec[i,k] #Deviance contribution 

  } 

 dsum[i] <- sum(delta[i,1:na[i]]) 

 resdev[i] <- sum(dev[i,1:na[i]]) # summed residual deviance    

} 

totresdev <- sum(resdev[]) #Total Residual Deviance 

d[1]<-0 # treatment effect is zero for reference treatment 

for (k in 2:nt){ d[k] ~ dnorm(0,.0001) } # vague priors for treatment effects 

  sd ~ dunif(0,5) # vague prior for between-trial SD. 

  tau <- pow(sd,-2) # between-trial precision = (1/between-trial variance) 

} 106 



The NICE results (Bayesian) 
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Winbugs using Omega (1) 
... and masses of iterations. 

  node  mean  sd  MC error 2.5% median 97.5% start sample 

 d[2] -1.848 0.531 0.003018 -2.909 -1.838 -0.8604 10000 990001 

 d[3] -0.4978 0.6629 0.006444 -1.777 -0.4927 0.7522 10000 990001 

 d[4] -0.5311 0.6489 0.007535 -1.781 -0.5287 0.7055 10000 990001 

 d[5] -0.8312 0.8035 0.009799 -2.364 -0.8293 0.6862 10000 990001 

 sd 0.2822 0.3166 0.004325 0.008667 0.1925 1.095 10000 990001 

[Note sd is √2 smaller due to parameterisation.] 

 

theta[i,k] <- mu[i] + d[t[i,k]]  +delta[i,k] 

delta[i,k] ~ dnorm(0,tau) 
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MCMC procedure in SAS 

• Tends to get stuck if we do not keep SD away from 
zero. 

prior sd ~ uniform(0.001,5) ; 

 

OR better work on the logsd scale 

prior logsd ~ general(logsd, upper=log(5)) ; 
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Omega (1): Easy way is add on variance. 

ods rtf file="&studydir.\output\ex1"; 

ods graphics on; 

proc mcmc data=ParkBayes propcov=quanew nmc=2000000  thin=10 monitor=(P_Treat logsd mysd 
) seed=246810; 

array P_Study[7] P_Study1-P_Study7; 

array P_Treat[5] P_Treat1-P_Treat5; 

parms P_Study1-P_Study7 0  P_Treat2-P_Treat5 0 ; 

prior P_Study1-P_Study7  P_Treat2-P_Treat5 ~ general(0); 

parms logsd 0; 

prior logsd ~ general(logsd, upper=log(5)); 

mysd=exp(logsd); 

P_Treat[1]=0; 

Mu=  P_Study[Study] + P_Treat[Treatment] ; 

v=Var+mysd*mysd/2; 

model Y ~ normal(mean=Mu, var=v); 

run; 
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Same as Nice results 
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Posterior Summaries 

Parameter N Mean Standard 

Deviation 

Percentiles 

25% 50% 75% 

P_Treat1 200000 0 0 0 0 0 

P_Treat2 200000 -1.8505 0.5436 -2.1345 -1.8399 -1.5498 

P_Treat3 200000 -0.4990 0.6781 -0.8872 -0.4928 -0.1055 

P_Treat4 200000 -0.5280 0.6487 -0.9103 -0.5248 -0.1427 

P_Treat5 200000 -0.8302 0.8007 -1.2696 -0.8255 -0.3831 

logsd 200000 -1.4638 1.2239 -2.0871 -1.2810 -0.6448 

mysd 200000 0.4022 0.4350 0.1240 0.2778 0.5248 
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• But this does not generalise to case of Binary data. 

 

• Need to introduce the random effect directly. 

• That will generalise. 
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Omega (1) and random effect. SAS 9.2 

proc mcmc data=Parkinsons  nmc=2000000 thin=10 monitor=(P_Treat logsd mysd ) seed=246810; 

array P_Study[7] P_Study1-P_Study7; 

array P_Treat[5] P_Treat1-P_Treat5; 

array RE[15]; 

parms P_Study1-P_Study7 0  P_Treat2-P_Treat5 0 ; 

prior P_Study1-P_Study7  P_Treat2-P_Treat5 ~ general(0); 

parms logsd 0; 

prior logsd ~ general(logsd,upper=log(5)); 

mysd=exp(logsd)/sqrt(2); 

P_Treat[1]=0; 

 

parms RE: /slice; 

prior RE: ~ normal(0,sd=mysd); 

Mu=  P_Study[Study] + P_Treat[Treatment] + RE[record]; 

model Y ~ normal(mean=Mu, SD=SE); 

run; 
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Posterior Summaries 

Parameter N Mean Standard 

Deviation 

Percentiles 

25% 50% 75% 

P_Treat1 200000 0 0 0 0 0 

P_Treat2 200000 -1.8746 0.5162 -2.1502 -1.8501 -1.5638 

P_Treat3 200000 -0.5412 0.6339 -0.9129 -0.5214 -0.1367 

P_Treat4 200000 -0.5871 0.6087 -0.9552 -0.5692 -0.1929 

P_Treat5 200000 -0.9059 0.7447 -1.3229 -0.8787 -0.4505 

mysd 200000 0.3867 0.3833 0.1248 0.2772 0.5212 

 

 

Monte Carlo Standard Errors 

Parameter MCSE Standard 

Deviation 

MCSE/SD 

P_Treat1 0 0 . 

P_Treat2 0.0107 0.5162 0.0207 

P_Treat3 0.0166 0.6339 0.0262 

P_Treat4 0.0179 0.6087 0.0293 

P_Treat5 0.0239 0.7447 0.0321 

mysd 0.0116 0.3833 0.0303 

 

 



/SLICE option on PARMS statement. 

• The /SLICE uses a separate sweep for each random 
effect. 

• Uses  a slice sampler to sample. 

• Both the use of SLICE and the increased number of 
sweeps of the data make this approach take very much 
longer. 

• 15 minutes, while the following SAS 9.3 code takes 6 seconds. 

 

• But it does help the mixing of the SD parameter. 
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But even easier in SAS 9.3 

proc mcmc data=Parkinsons  nmc=200000 nthin=20 seed=246810 
monitor=(mysd); 

random Studyeffect ~general(0) subject=Study init=(0) ; 

random Treat ~general(0) subject=Treatment  init=(0) zero=first 
monitor=(Treat); 

parms logsd 0; 

prior logsd ~ general(logsd, upper=log(5)); 

mysd=exp(logsd); 

random RE ~normal(0,sd=mysd/sqrt(2)) subject=_OBS_ init=(0); 

Mu=  Studyeffect + Treat +RE; 

model Y ~ normal(mean=Mu, sd=SE); 

run; 
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Results. Fast but need more iterations. 
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Posterior Summaries 

Paramet

er 

N Mean Standard 

Deviation 

Percentiles 

25% 50% 75% 

mysd 10000 0.4940 0.6525 0.1362 0.3019 0.5878 

Treat_3 10000 -0.5009 0.7351 -0.9027 -0.4901 -0.0841 

Treat_2 10000 -1.8846 0.6800 -2.1703 -1.8466 -1.5430 

Treat_4 10000 -0.6130 0.8344 -0.9552 -0.5455 -0.1464 

Treat_5 10000 -0.9796 1.1094 -1.3342 -0.8442 -0.3859 

Monte Carlo Standard Errors 

Parameter MCSE Standard 

Deviation 

MCSE/SD 

mysd 0.0697 0.6525 0.1068 

Treat_3 0.0380 0.7351 0.0517 

Treat_2 0.0462 0.6800 0.0679 

Treat_4 0.0882 0.8344 0.1057 

Treat_5 0.1276 1.1094 0.1150 



Treatment not mixing as well 
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Underlying histogram. 
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Use SGPLOT and not K3D 

proc mcmc data=Parkinsons  nmc=200000 nthin=20 seed=246810 
monitor=(mysd) outpost=outp1; 

... ... 

run; 

 

proc sgplot data=outp1; 

  histogram mysd /binstart=0.05 binwidth=0.1; 

  density mysd / type=kernel; 

  keylegend / location=inside position=topright; 

run; 

 

• Need binstart= and binwidth= to get cell to start at zero. 
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• May need to include a lower limit for SD as well. 

• Monitor the diagnostic graphs. 

 

parms logsd 0; 

prior logsd ~ general(logsd, 

          lower=log(0.001), upper=log(5)); 
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Omega (2) 

• ... or 15 random effects and use our X1, X2, X3 trick. 

 

• Here the propcov=quanew trick works poorly. 

 

• For random effect we use 

• SLICE option on the PARMS statement for the random effects 
in SAS 9.2. 

• RANDOM statement in SAS 9.3 
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Set up the three variables X1, X2 and X3. 

data Parkbayes; 

set Parkinsons; 

by study; 

retain offset 0 lastnarm 0; 

array x[3]x1-x3; 

retain index; 

if  first.study  then index=0; 

index=index+1; 

drop i lastnarm; 

if first.study then offset=offset+lastnarm; 

lastnarm=narm; 

do i=1 to 3; 

 if i<= narm then x[i]=((i=index)-(1/narm)) / sqrt(0.5); 

 else x[i]=0; 

end; run; 
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proc mcmc data=ParkBayes  ntu=1000 nmc=200000 nthin=10 seed=246810 monitor=(P_Treat2-
P_Treat5 logsd mysd); 

array P_Study[7] P_Study1-P_Study7; 

array P_Treat[5] P_Treat1-P_Treat5; 

array P_rand[15] P_Rand1-P_Rand15; 

array x[3] x1-x3; 

parms P_Study1-P_Study7 0  P_Treat2-P_Treat5 0 ; 

parms P_rand1-P_rand15 /slice;  

parms logsd 0; 

prior logsd ~ general(logsd, upper=log(5)); 

mysd=exp(logsd); 

prior P_Rand:  ~ normal(0,sd=mysd); 

prior P_Study1-P_Study7 ~ general(0); 

prior P_Treat2-P_Treat5 ~ general(0); 

P_Treat[1]=0; 

sum=0; 

do i=1 to narm; 

 sum=sum+x[i]*P_Rand[offset+i]; 

end; 

Mu=  P_Study[Study] + P_Treat[Treatment] + sum; 

model Y ~ normal(mean=Mu, sd=SE); run; 127 
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Posterior Summaries 

Parameter N Mean Standard 

Deviation 

Percentiles 

25% 50% 75% 

P_Treat2 20000 -1.8489 0.5341 -2.1292 -1.8413 -1.5492 

P_Treat3 20000 -0.5111 0.6358 -0.8839 -0.4975 -0.1217 

P_Treat4 20000 -0.5565 0.6334 -0.9201 -0.5411 -0.1649 

P_Treat5 20000 -0.8819 0.7827 -1.2817 -0.8480 -0.4211 

logsd 20000 -1.4984 1.1884 -2.1647 -1.3213 -0.6826 

mysd 20000 0.3880 0.4171 0.1148 0.2668 0.5053 
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Using RANDOM statement 
Needs lower bound for logsd prior. 

proc mcmc data=ParkBayes  nmc=200000 thin=10 seed=246810 monitor=(logsd mysd); 

array x[3] x1-x3; 

array P_Rand[3]; 

array zero[3] (0,0,0); 

parms logsd 0; 

prior logsd ~ general(logsd,lower=log(0.01) upper=log(5)); 

mysd=exp(logsd); 

 

random Studyeffect ~general(0) subject=Study init=(0) ; 

random Treat ~general(0) subject=Treatment  init=(0) zero=first monitor=(Treat); 

random P_Rand ~ mvnar(mean=zero, sd=mysd, 0) subject=study ; 

sum=0; 

do i=1 to narm; 

 sum=sum+x[i]*P_Rand[i]; 

end; 

Mu=  Studyeffect + Treat + sum; 

model Y ~ normal(mean=Mu, sd=SE); run; 
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Random effect SD is largish 
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Posterior Summaries 

Parameter N Mean Standard 

Deviation 

Percentiles 

25% 50% 75% 

logsd 20000 -1.1461 1.0121 -1.7023 -1.0082 -0.4418 

mysd 20000 0.4825 0.4326 0.1823 0.3649 0.6429 

Treat_3 20000 -0.5309 0.7811 -0.8958 -0.4986 -0.0821 

Treat_2 20000 -1.8723 0.5355 -2.1673 -1.8537 -1.5489 

Treat_4 20000 -0.5416 0.7279 -0.9362 -0.5306 -0.0948 

Treat_5 20000 -0.8274 0.9531 -1.3041 -0.8392 -0.3376 

Monte Carlo Standard Errors 

Parameter MCSE Standard 

Deviation 

MCSE/SD 

logsd 0.1177 1.0121 0.1163 

mysd 0.0669 0.4326 0.1547 

Treat_3 0.0890 0.7811 0.1140 

Treat_2 0.0345 0.5355 0.0644 

Treat_4 0.0757 0.7279 0.1040 

Treat_5 0.1093 0.9531 0.1147 



Logsd and SD are not mixing well 
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Summary for Bayesian 
 [Normal data: Random effects]  

• Use code 

 parms logsd 0; 

 prior logsd ~ general(logsd,lower=log(0.01) upper=log(5)); 

 mysd=exp(logsd); 

 but lower limit may not be needed, especially when heterogeneity 
exists. 

 

• Random effect introduces lots of additional parameters, one for 
each record in data set. 

• For Normal data simply add variance onto the fixed known residual 
and use same code as for fixed effects. 

• We will need to include random effect specifically when we move to 
non-Normal data. 
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Summary 
 [Normal data: Random effects]  

• Different results between Frequentist and Bayesian, 
especially if small observed variability at study level. 

• This is to be expected. 

• Main difference is the increase in width of Credibility interval 
compared to confidence interval. 

 

• For Linear link both models (1) and (2) for Omega give 
same results. 

• When using REML (Frequentist). 

• When using flat priors for Study effect (Bayesian). 
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Variability at top stratum. 

We now generate an example where the ML estimate 
gives a positive variance at trial level. 
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Quadruple the Numbers.... 

• To demonstrate the estimation of study level variability 
when it is positive, we modify the current data. 

• Assume that each trial arm has 4 times the amount of 
data with the same SD. 

• This reduces the variability at the within study level (due 
to sampling within study). 

• This increases the estimated variability at the study 
level. 
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Study Treatment y sd n Difference 

[Calculated] 

Se(diff) 

[Calculated] 

1 1 

3 

-1.22 

-1.53 

3.7 

4.28 

4 * 54 

4 * 95 

 

-0.31 

 

0.668/2 

2 1 

2 

-0.7 

-2.4 

3.7 

3.4 

4 * 172 

4 * 173 

 

-1.7 

 

0.383/2 

3 1 

2 

4 

-0.3 

-2.6 

-1.2 

4.4 

4.3 

4.3 

4 * 76 

4 * 71 

4 * 81 

 

-2.3 

-0.9 

 

0.718/2 

0.695/2 

4 3 

4 

-0.24 

-0.59 

3 

3 

4 * 128 

4 * 72 

 

-0.35 

 

0.442/2 

5 3 

4 

-0.73 

-0.18 

3 

3 

4 * 80 

4 * 46 

 

0.55 

 

0.555/2 

6 4 

5 

-2.2 

-2.5 

2.31 

2.18 

4 * 137 

4 * 131 

 

-0.3 

 

0.274/2 

7 4 

5 

-1.8 

-2.1 

2.48 

2.99 

4 * 154 

4 * 143 

 

-0.3 

 

0.320/2 



Using quadruple data. 
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Using the quadruple data 



Specify known variances on RANDOM 

 

proc mixed data= Parkinsonstimes4; 

class Study Treatment Record; 

model  Y = Study Treatment  /solution  ddfm=kr ; 

random SE / subject=Study*Treatment; 

parms 1 1 / HOLD=(1); 

lsmeans Treatment / diff=control("1"); 

run; 
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Specify known variances on REPEATED 

 

proc mixed data=Parkinsonstimes4 ; 

class Study Treatment; 

model Y= Study Treatment / solution ddfm=kr; 

random intercept /subject=Study*Treatment ; 

parms 1 1 / hold=(2); 

weight Weight; 

lsmeans Treatment / diff=control("1"); 

run; 
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Covariance parameter estimates 

Covariance Parameter Estimates 

Cov Parm     Subject            Estimate 

SE           Study*Treatment      1.0000 

Residual                         0.03876 

 

Covariance Parameter Estimates 

Cov Parm      Subject            Estimate 

Intercept     Study*Treatment     0.03876 

Residual                           1.0000 

 

0.03876 is variance σ2/2. 

So SD for random effect model is √(2 * 0.03876 ) = 0.2784 

which matches the REML profile plot. 
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Treatment differences. 

 Differences of Least Squares Means 

                                                    Standard 

Effect       Treatment    _Treatment    Estimate       Error      DF    t Value    Pr > |t| 

Treatment    2            1              -1.8747      0.2767       3      -6.78      0.0066 

Treatment    3            1              -0.5120      0.3249       4      -1.58      0.1902 

Treatment    4            1              -0.5314      0.3190       4      -1.67      0.1711 

Treatment    5            1              -0.8314      0.3895    3.23      -2.13      0.1161 

 

 

• Note the very small d.f. from DDFM=KR. 
This is because the random effect variance is so poorly estimated. 

• When variance is on the boundary at zero KR does not apply 
and the d.f. are very large. Variance is assumed known at zero. 

• KR is performing close to its limits. Take care when 
denominator degrees of freedom go lower than about 3. 

• Note that SEDs are smaller than even fixed effects model. 
• Although variability pushed up to between study level, it has less impact. 
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Note implication. 

• If, in contrast, we overestimate the SE within trial then 
this will reduce the variability between studies. 

• Might be because estimates are based on covariate 
adjustments but SEs are not (using raw SDs say). 

• Randomization at Centre level without Centre in the model. 

• Rounding of source data. 

• Although this reduces the between study variability, the 
overall impact is conservative, increasing the SED for 
indirect comparisons.  

144 



Summary: Normal data 

• Fixed effects. 

• Use MIXED or GENMOD. 

• Frequentist and Bayesian effectively the same. So why bother! 

• Bayes statement on GENMOD makes Bayesian very easy. 

  

• Random effect 

• We expect Frequentist and Bayesian to be different. 

• Frequentist easy with MIXED or GENMOD using WEIGHT. 

• Bayesian easy with the MCMC procedure. 

• Use trick of adding variability to residual rather than specify 
individual random effects. 

• (1) and (2) for Omega are identical for REML or Bayes with flat 
priors for Study fixed effect. Use whichever is easiest, usually (1). 
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Final message 

• The “Random effects” in the casual term “random 
effects model” refers to the difference between 
treatments. 

• The treatment* Study interaction is random. 

 

• Study is treated as a fixed effect. 

• This means all information come from with trial and is fully 
randomized. 

 

• Beware any analysis (Bayesian or otherwise) where 
Study is treated as a random effect. 
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WORKSHOP 2  

1 



Workshop 

• Normal data. 
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Scott et al 

D. A. Scott, K. S. Boye, L. Timlin, J. F. Clark & J.H. Best 
(2013) 

A network meta-analysis to compare glycaemic control in 
patients with type 2 diabetes treated with exenatide 
once weekly or liraglutide once daily in comparison with 
insulin glargine, exenatide twice daily or placebo.  

Diabetes, Obesity and Metabolism 15: 213–223. 
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Summary 
 

The paper’s aims: 

 The glucagon-like peptide-1 receptor agonists (GLP-1 
RAs) exenatide once weekly (ExQW) and liraglutide 
once daily (QD) are indicated to improve glycaemic 
control in patients with type 2 diabetes. 

 Although glycaemic control with ExQW versus liraglutide 
QD 1.8 mg has been directly compared, no studies 
have compared ExQW with liraglutide QD 1.2 mg or 
determined the probable relative efficacies of various 
injectable therapies for glycaemic control; therefore, a 
network meta-analysis was performed to address these 
questions. 
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The network 
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Studies. 

• 22 studies. 

• 48 records (Study*Treat combinations). 

• 6 treatments including Placebo 
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Actions 

• Follow the steps in the handout. 

 

• Program file is Workshop2.sas 

 

• We will discuss our results at the end. 

7 



Fixed effects model 

Title1 "Fixed effects basic model"; 

proc mixed data=Scott3 ; 

class Study Treatment; 

model Y= Study Treatment /ddf=500,500; 

weight Weight; 

parms 1 /hold=(1); 

lsmeans Treatment / diff=control("Placebo") df=500 CL; 

run; 
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Fixed effect results. 
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Differences of Least Squares Means 

Effect Treatment _Treatmen

t 

Estimate Standard 

Error 

DF t Value Pr > |t| Alpha Lower Upper 

Treatment Exenatide 

BID 

Placebo -0.7900 0.04838 500 -16.33 <.0001 0.05 -0.8850 -0.6949 

Treatment Exenatide 

QW 

Placebo -1.1149 0.06084 500 -18.33 <.0001 0.05 -1.2344 -0.9954 

Treatment Insulin 

Glargine 

Placebo -0.8172 0.06270 500 -13.03 <.0001 0.05 -0.9404 -0.6940 

Treatment Liraglutide 

1.2mg 

Placebo -1.0313 0.06926 500 -14.89 <.0001 0.05 -1.1674 -0.8952 

Treatment Liraglutide 

1.8mg 

Placebo -1.2050 0.05694 500 -21.16 <.0001 0.05 -1.3169 -1.0931 

 

 



Random effects model 

Title1 "Random effects basic model"; 

proc mixed data=Scott3 ; 

class Study Treatment; 

model Y= Study Treatment /ddfm=KR; 

random intercept /subject=Study*Treatment ; 

weight Weight; 

parms 1 1 /hold=(2); 

lsmeans Treatment / CL diff=control("Placebo") L; 

run; 
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11 

Differences of Least Squares Means 

Effect Treatment _Treatment Estimate Standard 

Error 

DF t Value Pr > |t| Alpha Lower Upper 

Treatment Exenatide 

BID 

Placebo -0.7902 0.06369 21 -12.41 <.0001 0.05 -0.9226 -0.6577 

Treatment Exenatide 

QW 

Placebo -1.1434 0.08608 18 -13.28 <.0001 0.05 -1.3243 -0.9626 

Treatment Insulin 

Glargine 

Placebo -0.8241 0.08653 20.6 -9.52 <.0001 0.05 -1.0042 -0.6439 

Treatment Liraglutide 

1.2mg 

Placebo -1.0372 0.09062 21 -11.44 <.0001 0.05 -1.2256 -0.8487 

Treatment Liraglutide 

1.8mg 

Placebo -1.1880 0.07537 21 -15.76 <.0001 0.05 -1.3448 -1.0313 



Random effects 
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sqrt(0.005891*2) = 0.1085449 

Covariance Parameter Estimates 

Cov Parm Subject Estimate 

Intercept study*Treatment 0.005891 

Residual   1.0000 

 

 



Select difference with smallest d.f. 
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Differences of Least Squares Means 

Effect Treatment _Treatment Estimate Standard 

Error 

DF t Value Pr > |t| Alpha Lower Upper 

Treatment Exenatide 

BID 

Exenatide 

QW 

0.3533 0.07047 16.1 5.01 0.0001 0.05 0.2040 0.5025 

Treatment Exenatide 

BID 

Insulin 

Glargine 

0.03387 0.07204 17.6 0.47 0.6440 0.05 -0.1177 0.1854 

Treatment Exenatide 

BID 

Liraglutide 

1.2mg 

0.2470 0.09730 21 2.54 0.0191 0.05 0.04462 0.4493 

Treatment Exenatide 

BID 

Liraglutide 

1.8mg 

0.3978 0.07740 18.9 5.14 <.0001 0.05 0.2358 0.5599 

Treatment Exenatide 

BID 

Placebo -0.7902 0.06369 21 -12.41 <.0001 0.05 -0.9226 -0.6577 

Treatment Exenatide 

QW 

Insulin 

Glargine 

-0.3194 0.07365 12.4 -4.34 0.0009 0.05 -0.4793 -0.1595 

Treatment Exenatide 

QW 

Liraglutide 

1.2mg 

-0.1063 0.1060 16.9 -1.00 0.3300 0.05 -0.3300 0.1174 

Treatment Exenatide 

QW 

Liraglutide 

1.8mg 

0.04458 0.08492 13.2 0.53 0.6083 0.05 -0.1386 0.2278 

Treatment Exenatide 

QW 

Placebo -1.1434 0.08608 18 -13.28 <.0001 0.05 -1.3243 -0.9626 

Treatment Insulin 

Glargine 

Liraglutide 

1.2mg 

0.2131 0.1090 19.2 1.96 0.0653 0.05 -0.01485 0.4411 

Treatment Insulin 

Glargine 

Liraglutide 

1.8mg 

0.3640 0.08975 16.2 4.06 0.0009 0.05 0.1739 0.5540 

Treatment Insulin 

Glargine 

Placebo -0.8241 0.08653 20.6 -9.52 <.0001 0.05 -1.0042 -0.6439 

Treatment Liraglutide 

1.2mg 

Liraglutide 

1.8mg 

0.1509 0.07331 21 2.06 0.0522 0.05 -0.00160 0.3033 

Treatment Liraglutide 

1.2mg 

Placebo -1.0372 0.09062 21 -11.44 <.0001 0.05 -1.2256 -0.8487 

Treatment Liraglutide 

1.8mg 

Placebo -1.1880 0.07537 21 -15.76 <.0001 0.05 -1.3448 -1.0313 

 

 



Why? 

• Strange as it is a comparison with lots of direct links, so 
you might expect that the SD will depend less on the 
RE. 

 

• But these are studies with large numbers of subject 
leading to small SED, where the between study 
variation (RE) starts to dominate. 

 

• Here the frequentist approach is helping with 
interpretation. 
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The MCMC code. 

• Takes much longer to run. 

• Using the trick of not defining random effects directly 
makes mixing better. 

• The SAS 9.3 code is easier. 

 

• The RE SD is well estimated in this example so there is 
no difference between frequentist and Bayesian. 
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The RE SD is well estimated. 
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NMA METHODOLOGY (CONT.) 
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BINOMIAL DATA 
 

2 



CASE STUDY WITH BINARY 
DATA 
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Introduction 

• Yes / No outcome. 

• Often safety endpoints. 

• Most common form of data for indirect comparisons. 

• Rare events may introduce difficulties. 
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Example 1: 
Pagliaro et al (1992), 
Annals of internal Medicine,117,59-70. 

As used in  

• Higgins & Whitehead (1996) Borrowing strength from external trials in 
meta-analysis. Statistics in Medicine, 15: 2733–2749. 

• Whitehead (2002) Meta-analysis of controlled clinical trials. Wiley. 

• Lu & Ades (2004) Combination of direct and indirect evidence in mixed 
treatment comparisons. Statistics in Medicine, 23, 3105-3124.  

• Jones, Roger, Lane, Lawton, Fletcher, Cappelleri et al. (2011) Statistical 
approaches for conducting network meta-analysis in drug development. 
Pharmaceutical Statistics, 10, 523-531 

 

5 



Pagliaro et al. 

• 26 studies 

• Prevention of first bleeding in cirrhosis.  

• Compare either two or three nonsurgical treatments (A, 
B and C). 

• A was the use of Beta-blockers 

• B was Sclerotherapy 

• C was a Control treatment. 

 

• Data expressed as R events out of N subjects. 
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• Studies 1 and 2 have three arms 

• All the rest compare A to C, or compare B to C 
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• Studies 1 and 2 appear in both set 1 and 2 (3 arm studies) 

• Quite large differences in size of study (roughly equal sized arms within). 



 

Data Betablock1; 

Input  Study Ar An Br Bn Cr Cn ; 

datalines; 

1  2 43 9 42 13 41   

2  12 68 13 73 13 72   

3  4 20 0 0 4 16   

4  20 116 0 0 30 111  

5  1 30 0 0 11 49   

6  7 53 0 0 10 53   

7  18 85 0 0 31 89   

8  2 51 0 0 11 51   

9  8 23 0 0 2 25   

10  0 0 4 18 0 19   

11  0 0 3 35 22 36   

12  0 0 5 56 30 53   

13  0 0 5 16 6 18   

14  0 0 3 23 9 22   

15  0 0 11 49 31 46   

16  0 0 19 53 9 60   

17  0 0 17 53 26 60   

18  0 0 10 71 29 69   

19  0 0 12 41 14 41   

20  0 0 0 21 3 20   

21  0 0 13 33 14 35   

22  0 0 31 143 23 138  

23  0 0 20 55 19 51   

24  0 0 3 13 12 16   

25  0 0 3 21 5 28   

26  0 0 6 22 2 24   

; run; 
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Make data vertical (one row per arm) 
data betablock3; 

set betablock1 end=myend; 

by study; 

length Trt $ 8; 

retain Nreff 0 NTrtlev 0 Nstudy 0; 

drop ar an br bn cr cn Ntrtlev Record Nreff 
NStudy; 

retain record 0; 

Narm= (ar+an >0) + (br+bn >0) + (cr+cn >0) ; 

arm=0; 

index=0; 

if ar+an >0 then do; 

 arm=arm+1; 

 r=ar; 

 n=an; 

 Trt="A"; 

 ITrt=1; 

 record=record+1; 

 index=index+1; 

 output; 

end; 

10 

if br+bn >0 then do; 

 arm=arm+1; 

 r=br; 

 n=bn; 

 Trt="B"; 

 ITrt=2; 

 index=index+1; 

 record=record+1; 

 output; 

end; 

if cr+cn >0 then do; 

 arm=arm+1; 

 r=cr; 

 n=cn; 

 Trt="C"; 

 ITrt=3; 

 index=index+1; 

 record=record+1; 

 output; 

end; 

Nstudy=Nstudy+1; 

Nreff=Nreff+Narm-1; 

NTrtlev=max(Ntrtlev,narm); 

if myend then do; 

 call symput("Nrec",record); 

 call symput("Nreff",Nreff); 

 call symput("NTrtlev",NTrtlev); 

 call symput("NStudy",NStudy); 

end; 

run; 



Pagliaro in Vertical format 

Study    Narm    Index    R     N     Trt 

   1       3       1      2     43     1 

   1       3       2      9     42     2 

   1       3       3     13     41     3 

   2       3       1     12     68     1 

   2       3       2     13     73     2 

   2       3       3     13     72     3 

   3       2       1      4     20     1 

   3       2       2      4     16     3 

   4       2       1     20    116     1 

   4       2       2     30    111     3 

   5       2       1      1     30     1 

   5       2       2     11     49     3 

   6       2       1      7     53     1 

   6       2       2     10     53     3 
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Statistical overview 

• The problem falls within the class of generalized linear 
models. 

 

• But we may need to add random effects. 

 

• Generalized mixed models can be fitted and interpreted in 
two ways: 

• Marginal models [e.g. REPEATED statement in proc GENMOD.] 

• Subject-specific models. Here the model is defined conditional 
upon the random subject effect. 

• We follow the second route. 
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Fixed effects – Odds ratios 

• Logistic regression. 

• Logit link function and Binomial distribution. 

 

• Issues 

• Maximum likelihood approach relies on asymptotic results. 

• Use EXACT approach with very rare events. 

• Often interpreted in terms of LogOdds ratios (LOR). 
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Fixed effects – Relative risk 

• Log link function and Binomial distribution. 

 

• Issues 

• Modelled probability can in theory go > 1 

• But usually use with Yes/No arranged to give small 
probabilities. 

 

 

14 



Generalized linear model (within study) 

• Both assume a Binomial distribution for R / N. 

 

• Logistic link or Log link. 

• We will later see the use of the complementary log-log as link 
function. 

 

• For low rate events such as rare adverse events, both 
behave similarly. 
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• Many people in this area want to contrast direct 
information from indirect information. 

 

• For this purpose we will temporarily analyse studies 1 
and 2 separately from the rest. 

• Note that as there are no estimated variance parameters, this is 
possible – no worry about sharing of parameters. 
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Ignoring the three arm studies 
Logistic fixed effects model (no RE) 
 

proc genmod data=Betablock2 desc; 

where Study notin(1,2); 

class Study Trt; 

model R/N = Study Trt /link=logit dist=bin type1; 

lsmeans Trt /diff exp cl; 

run; 
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Logistic removing studies 1 and 2 

  

Direct comparisons A-C and B-C 

Indirect comparison A-B 
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Differences of Trt Least Squares Means 

Trt _Trt Estimate Standard 

Error 

z Value Pr > |z| Alpha Lower Upper Exponent

iated 

Exponent

iated 

Lower 

Exponent

iated 

Upper 

1 2 0.004680 0.2208 0.02 0.9831 0.05 -0.4280 0.4374 1.0047 0.6518 1.5486 

1 3 -0.6033 0.1847 -3.27 0.0011 0.05 -0.9654 -0.2413 0.5470 0.3808 0.7856 

2 3 -0.6080 0.1209 -5.03 <.0001 0.05 -0.8450 -0.3710 0.5444 0.4296 0.6900 



Fixed effects analysis 

• Traditionally interest has focused on “direct” and “indirect” sources 
of information. 

• Note how A-B contrast has larger SED as it is mostly estimated 
indirectly. 

• Bayesian results can be obtained using BAYES statement using 
GENMOD; 
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Logistic, studies 1 and 2 only 

20 

Differences of Trt Least Squares Means 

Trt _Trt Estimate Standard 

Error 

z Value Pr > |z| Alpha Lower Upper Exponent

iated 

Exponent

iated 

Lower 

Exponent

iated 

Upper 

1 2 -0.4963 0.3715 -1.34 0.1816 0.05 -1.2245 0.2318 0.6088 0.2939 1.2609 

1 3 -0.7304 0.3631 -2.01 0.0442 0.05 -1.4420 -0.01883 0.4817 0.2365 0.9813 

2 3 -0.2341 0.3259 -0.72 0.4726 0.05 -0.8728 0.4047 0.7913 0.4178 1.4988 

 

 



Logistic, all studies together 

21 

Differences of Trt Least Squares Means 

Trt _Trt Estimate Standar

d Error 

z Value Pr > |z| Alpha Lower Upper Expone

ntiated 

Expone

ntiated 

Lower 

Expone

ntiated 

Upper 

1 2 -0.1172 0.1892 -0.62 0.5357 0.05 -0.4879 0.2536 0.8894 0.6139 1.2887 

1 3 -0.6700 0.1608 -4.17 <.0001 0.05 -0.9852 -0.3548 0.5117 0.3734 0.7013 

2 3 -0.5528 0.1125 -4.91 <.0001 0.05 -0.7733 -0.3324 0.5753 0.4615 0.7172 

 

 

Sample Differences of Trt Least Squares Means 

Trt _Trt N Estimate Standard 

Deviation 

Percentiles Alpha Lower 

HPD 

Upper 

HPD 

Exponenti

ated 

Standard 

Error of 

Exponenti

ated 

Percentiles for 

Exponentiated 

Lower 

HPD of 

Exponenti

ated 

Upper 

HPD of 

Exponenti

ated 25th 50th 75th 25th 50th 75th 

1 2 10000 -0.1239 0.1919 -0.2518 -0.1212 0.00519 0.05 -0.4904 0.2489 0.8998 0.173030 0.7774 0.8859 1.0052 0.5683 1.2223 

1 3 10000 -0.6788 0.1617 -0.7883 -0.6813 -0.5730 0.05 -0.9873 -0.3678 0.5139 0.083560 0.4546 0.5059 0.5638 0.3726 0.6923 

2 3 10000 -0.5549 0.1145 -0.6265 -0.5547 -0.4816 0.05 -0.7878 -0.3457 0.5779 0.066140 0.5344 0.5743 0.6178 0.4548 0.7077 

 

 

bayes diag=all statistics=all NMC=10000 seed=12345; 



Using MCMC procedure SAS 9.3 

proc mcmc data=betablock3  nmc=200000 seed=246810; 

random Studyeffect ~general(0) subject=Study init=(0) ; 

random Treat ~general(0) subject=Trt  init=(0) zero=last monitor=(Treat); 

Mu=  Studyeffect + Treat ; 

P=1-(1/(1+exp(mu))); 

model R ~ binomial(n=N, p=P); 

run; 

 

• Zero=Last makes contrasts compare to Control treatment C. 

• Mixes so well no need for thinning. 
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Proc MCMC results 
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Posterior Summaries 

Param

eter 

N Mean Standa

rd 

Deviati

on 

Percentiles 

25% 50% 75% 

Treat_

A 

200000 -0.6798 0.1622 -0.7878 -0.6792 -0.5702 

Treat_

B 

200000 -0.5597 0.1131 -0.6356 -0.5597 -0.4830 

Posterior Intervals 

Paramet

er 

Alpha Equal-Tail Interval HPD Interval 

Treat_A 0.050 -1.0024 -0.3638 -1.0001 -0.3617 

Treat_B 0.050 -0.7816 -0.3371 -0.7821 -0.3379 

 

 

 

 



Fixed effects analysis 

• Bayesian analysis gives very similar results to 
maximum likelihood (ML). As expected! 

• MTC summarises combination of direct and indirect 
comparisons. 
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Random effects Binary Data 

• This is the truly classic problem. 
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Random effects model 

• Study i and Arm k, with Treatment t(i,k) 

 

 

 

 

where ηik has zero mean, independent between studies with 

Cov( ηik , ηih ) = ωkh 

 

Note Study and Treatment main effects remain as FIXED. 
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The Statistical model 
Omega as before. 

• Symmetry is assumed leading to two possible options 

where the i’th study has mi arms (Ω is mi by mi). 

 

1) ωkk  =  σ2/2  and  ωkh  =  0  if k≠h.  

this is a simple diagonal matrix. 

 

2) ωkk  = σ2 - σ2/2mi 

 and  ωkh  =  - σ2/2mi  if k≠h. 
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The two forms for Omega. 

• For 2 and 3 arm trials 

 

                        (1)                                   (2) 
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Generalized Mixed Models (GLMM) 

• In the Normal case the marginal distribution of Y 
integrated over the random effect is known and Normal. 

• But with GLMM Frequentist has to use an approximation or use 
numerical integration. 

• Bayesian can use MCMC with random effects as variables in the 
hierarchic model. 

 

• Up until recently these were fitted using Pseudo-Quasi-
likelihood (PQL) algorithms (approximation). 

• Does not work well with Binary data and logistic link. 

• Useful with Binomial data as long as Normal approximation is OK. 

• Can use REML within PQL to allow for estimation of linear model 
effects in estimating variance components. 
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Generalized Mixed Models (GLMM) 

• Favoured approach in GLMM circles is now to use some 
form of Gaussian Quadrature (Numerical integration), or 
Laplace approximation. 

• Used to require NLMIXED, but now can use GLIMMIX. 

• But no current equivalent to REML (an issue here). 

 

 

• So now we move to using the GLIMMIX procedure. 

• For PQL with REML 

• For Gaussian quadrature. 
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GLIMMIX – Fixed effects (again) 

proc glimmix data=Betablock2 ; 

class Study Trt; 

model R/N = Study Trt /link=logit dist=bin ddfm=none; 

lsmeans Trt /diff cl oddsratios; 

run; 

 

• Logit link and Binomial distribution. 

• Use ddfm=none to get equivalent results to GENMOD. 
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Fixed effects logistic using GLIMMIX 

The GLIMMIX Procedure 

 

                                             Differences of Trt Least Squares Means 

 

                                                                                                               Lower        Upper 

                                                                                                          Confidence   Confidence 

                        Standard                                                                   Odds    Limit for    Limit for 

Trt   _Trt   Estimate      Error      DF   t Value   Pr > |t|    Alpha      Lower      Upper      Ratio   Odds Ratio   Odds Ratio 

 

1     2       -0.1172     0.1892   Infty     -0.62     0.5357     0.05    -0.4879     0.2536      0.889        0.614        1.289 

1     3       -0.6700     0.1608   Infty     -4.17     <.0001     0.05    -0.9852    -0.3548      0.512        0.373        0.701 

2     3       -0.5528     0.1125   Infty     -4.91     <.0001     0.05    -0.7733    -0.3324      0.575        0.461        0.717 

 

 

Results the same as before. 
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So add the random effect as (1) 

proc glimmix data=Betablock2 method=RSPL; 

class Study Trt; 

model R/N = Trt Study/link=logit dist=bin ddfm=none; 

random Trt / subject=Study; 

lsmeans Trt /diff cl oddsratios; 

run; 

• This uses PQL algorithm with REML (actually the 
default). 
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PQL with Omega (1) 

 Covariance Parameter Estimates 

 

Cov                            Standard 

Parm    Subject    Estimate       Error 

 

Trt     Study        0.5813      0.2286 

 

 

Differences of Trt Least Squares Means 

                                                                                                               Lower        Upper 

                                                                                                          Confidence   Confidence 

                        Standard                                                                   Odds    Limit for    Limit for 

Trt   _Trt   Estimate      Error      DF   t Value   Pr > |t|    Alpha      Lower      Upper      Ratio   Odds Ratio   Odds Ratio 

1     2       -0.1620     0.4673   Infty     -0.35     0.7289     0.05    -1.0778     0.7539      0.850        0.340        2.125 

1     3       -0.7364     0.4014   Infty     -1.83     0.0666     0.05    -1.5230    0.05034      0.479        0.218        1.052 

2     3       -0.5744     0.2814   Infty     -2.04     0.0413     0.05    -1.1260   -0.02279      0.563        0.324        0.977 

 

 

• Note variance is half the variance of treatment difference σ2 as specified before and as in 
Jones et al.  So σ2 =1.1626. 

• This is slightly less than then median from the Bayesian posterior for SD we get later (1.4). 
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Bayes solutions from Jones et al. 

35 

B. Jones et al. 



Gaussian Quadrature with Omega (1) 

proc glimmix data=Betablock2 method=QUAD; 

class Study Trt; 

model R/N = Trt Study/link=logit dist=bin ddfm=none; 

random Trt / subject=Study; 

lsmeans Trt /diff cl oddsratios; 

run; 

 

• Use of NLMIXED gives identical results. 
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Gaussian Quadrature with Omega (1) 

Covariance Parameter Estimates 

 

Cov                            Standard 

Parm    Subject    Estimate       Error 

Trt     Study        0.1613     0.06505 

 

 

Differences of Trt Least Squares Means 

                                                                                                               Lower        Upper 

                                                                                                          Confidence   Confidence 

                        Standard                                                                   Odds    Limit for    Limit for 

Trt   _Trt   Estimate      Error      DF   t Value   Pr > |t|    Alpha      Lower      Upper      Ratio   Odds Ratio   Odds Ratio 

1     2       -0.1316     0.3021   Infty     -0.44     0.6632     0.05    -0.7237     0.4606      0.877        0.485        1.585 

1     3       -0.7171     0.2596   Infty     -2.76     0.0057     0.05    -1.2259    -0.2082      0.488        0.293        0.812 

2     3       -0.5855     0.1814   Infty     -3.23     0.0012     0.05    -0.9411    -0.2300      0.557        0.390        0.795 

 

 

• Estimate of variability much lower. 

• Implies Standard errors much smaller. Is this due to using ML? 

• Note variance is half the variance of treatment difference σ2 as specified before and as in 
Jones et al. So σ2 =0.3226, compared to 1.16 before. 
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proc glimmix data=Betablock2 Method=MSPL; 
Maximum Likelihood with PQL. Omega (1) 

Covariance Parameter Estimates 

Cov                            Standard 

Parm    Subject    Estimate       Error 

Trt     Study        0.1529     0.06081 

 

 

Differences of Trt Least Squares Means 

                                                                                                               Lower        Upper 

                                                                                                          Confidence   Confidence 

                        Standard                                                                   Odds    Limit for    Limit for 

Trt   _Trt   Estimate      Error      DF   t Value   Pr > |t|    Alpha      Lower      Upper      Ratio   Odds Ratio   Odds Ratio 

1     2       -0.1285     0.2963   Infty     -0.43     0.6645     0.05    -0.7093     0.4523      0.879        0.492        1.572 

1     3       -0.7037     0.2545   Infty     -2.77     0.0057     0.05    -1.2025    -0.2050      0.495        0.300        0.815 

2     3       -0.5752     0.1780   Infty     -3.23     0.0012     0.05    -0.9240    -0.2264      0.563        0.397        0.797 

 

• With ML rather than REML the PQL variance estimate is slightly smaller than with 
Gaussian quadrature, which is expected from theory. 

• σ2 =0.3058. 

• This should be (partly) fixed by using Omega (2) rather than Omega (1). 
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Omega (2) with same trick as for Normal 

data jr; 

set Betablock2; 

array x[3] x1-x3; 

do i=1 to 3; 

 if i<= narm then x[i]=sqrt(0.5)*((i=index)-1/narm); 

 else x[i]=0; 

end; 

run; 

 

proc glimmix data=jr method=QUAD; 

class Study Trt ; 

model R/N = Trt Study/link=logit dist=bin ddfm=none; 

random X1 X2 X3 / subject=Study type=TOEP(1) ; 

lsmeans Trt /diff cl oddsratios; 

run; 
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Gaussian Quadrature with Omega (2) 

 Covariance Parameter Estimates 

                                   Standard 

Cov Parm    Subject    Estimate       Error 

Variance    Study        1.0246      0.4021 

 

Differences of Trt Least Squares Means 

                                                                                                               Lower        Upper 

                                                                                                          Confidence   Confidence 

                        Standard                                                                   Odds    Limit for    Limit for 

Trt   _Trt   Estimate      Error      DF   t Value   Pr > |t|    Alpha      Lower      Upper      Ratio   Odds Ratio   Odds Ratio 

1     2       -0.1590     0.4454   Infty     -0.36     0.7211     0.05    -1.0320     0.7140      0.853        0.356        2.042 

1     3       -0.7402     0.3827   Infty     -1.93     0.0531     0.05    -1.4902   0.009772      0.477        0.225        1.010 

2     3       -0.5812     0.2682   Infty     -2.17     0.0302     0.05    -1.1068   -0.05563      0.559        0.331        0.946 

 

 

• This is the result in Table III of Jones et al. 

• This is true estimate for σ2 (does not need doubling). 
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REML PQL with Omega (2) 

Covariance Parameter Estimates 

                                   Standard 

Cov Parm    Subject    Estimate       Error 

Variance    Study        1.1626      0.4572 

 

Differences of Trt Least Squares Means 

                                                                                                               Lower        Upper 

                                                                                                          Confidence   Confidence 

                        Standard                                                                   Odds    Limit for    Limit for 

Trt   _Trt   Estimate      Error      DF   t Value   Pr > |t|    Alpha      Lower      Upper      Ratio   Odds Ratio   Odds Ratio 

 

1     2       -0.1620     0.4673   Infty     -0.35     0.7289     0.05    -1.0778     0.7539      0.850        0.340        2.125 

1     3       -0.7364     0.4014   Infty     -1.83     0.0666     0.05    -1.5230    0.05034      0.479        0.218        1.052 

2     3       -0.5744     0.2814   Infty     -2.04     0.0413     0.05    -1.1260   -0.02279      0.563        0.324        0.977 

 

• This σ2 is larger than the one for Gaussian Quadrature as REML corrects for aliasing of 
random effect with Study fixed effect but also with Treatment fixed effect. 

• Note that this is the same as σ2 =1.162 from REML PQL with Omega (1). 

• REML has meant that the aliasing of fixed and random effects is automatically handled. 
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ML PQL (MSPL) with Omega (2) 

Covariance Parameter Estimates 

                                   Standard 

Cov Parm    Subject    Estimate       Error 

Variance    Study        0.9949      0.3886 

 

 

Differences of Trt Least Squares Means 

                                                                                                               Lower        Upper 

                                                                                                          Confidence   Confidence 

                        Standard                                                                   Odds    Limit for    Limit for 

Trt   _Trt   Estimate      Error      DF   t Value   Pr > |t|    Alpha      Lower      Upper      Ratio   Odds Ratio   Odds Ratio 

1     2       -0.1575     0.4397   Infty     -0.36     0.7202     0.05    -1.0194     0.7043      0.854        0.361        2.022 

1     3       -0.7322     0.3777   Infty     -1.94     0.0526     0.05    -1.4726   0.008138      0.481        0.229        1.008 

2     3       -0.5747     0.2647   Infty     -2.17     0.0300     0.05    -1.0936   -0.05580      0.563        0.335        0.946 

 

• This σ2 is slightly less than that for Gaussian Quadrature with Omega (2) where σ2 =1.0246 
as PQL slightly underestimates variance.  

• Gaussian Quadrature with full REML-like properties is perhaps something for the future, ... 
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Frequentist Summary so far 

• Well known that with Binomial data where counts are 
big enough for Normal approximation to hold, then PQL 
with REML is a safe approach. 

 

• Improvement of Guassian Quadrature (GQ) over PQL in 
terms of approximation to likelihood, is offset by bias 
from fixed effect parameters (no REML). 

 

• In this example PQL behaves much better, even when 
using Omega (2) approach than GQ.  
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For the future ... Use (I-X(X`X)-1X`)Z 
instead of Z in G. Quadrature approach. 
* Build the X and Z matrices; * Results not saved; 

proc glimmix data=newdata OUTDESIGN=Fred;; 

class Study Trt; 

model R/N = Trt Study/link=logit dist=bin ddfm=none ; 

random Trt*study; 

run; 

 

proc iml; 

use x(keep=_x1-_x30);    read all into x; 

use z(keep=_z1-_z54);   read all into z; 

xx=x`*x; 

z=z-x*ginv(xx)*x`*z; 

Create Newz from z; append from z; 

quit;   

 

* Need to give the random statement a subject= variable, and will not accept INTERCEPT; 

data newdata; 

merge Betablock2  Newz; 

James=1; 

run; 
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Need to use Laplace approximation 
rather than full G. Quadrature. 

proc glimmix data=newdata method=LAPLACE; 

class Study Trt; 

model R/N = Trt Study/link=logit dist=bin ddfm=none ; 

random col1-col54 /subject=james type=toep(1); 

run; 

 

The GLIMMIX Procedure 

      Covariance Parameter Estimates 

                                   Standard 

Cov Parm    Subject    Estimate       Error 

Variance    james        0.5700      0.2266 

This is the same as σ2 =1.14, which is close to RSPL value. 
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• This approach is not published. 

 

• But might be useful with rare events where PQL 
approximation may not hold. [But could go Bayesian, 
which is better documented.] 
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Should I use DDFM=KR? 

• PQL linearises the problem so KR is used on linearised 
problem. Allows for fixed effect parameters in estimating 
SD. 

• Will increase SEs and add d.f. for use with t for CI.s. 

• Useful for indicating when SD is not well estimated.  
 

                                             Differences of Trt Least Squares Means 

                                                                                                               Lower        Upper 

                                                                                                          Confidence   Confidence 

                        Standard                                                                   Odds    Limit for    Limit for 

Trt   _Trt   Estimate      Error      DF   t Value   Pr > |t|    Alpha      Lower      Upper      Ratio   Odds Ratio   Odds Ratio 

 

1     2       -0.1620     0.4682   21.67     -0.35     0.7327     0.05    -1.1338     0.8099      0.850        0.322        2.248 

1     3       -0.7364     0.4021   21.82     -1.83     0.0808     0.05    -1.5707    0.09804      0.479        0.208        1.103 

2     3       -0.5744     0.2821    21.2     -2.04     0.0544     0.05    -1.1607    0.01193      0.563        0.313        1.012 

was 
1     2       -0.1620     0.4673   Infty     -0.35     0.7289     0.05    -1.0778     0.7539      0.850        0.340        2.125 

1     3       -0.7364     0.4014   Infty     -1.83     0.0666     0.05    -1.5230    0.05034      0.479        0.218        1.052 

2     3       -0.5744     0.2814   Infty     -2.04     0.0413     0.05    -1.1260   -0.02279      0.563        0.324        0.977 
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Summary Random effects Frequentist 

• Use of Gaussian Quadrature with Omega (2)  is 
recommended in the Jones et al paper. 

 

• We now suggest that method=RSPL will behave better 
and is much easier as we can use OMEGA(1). 

• But beware when the event rate is very small, R=0,1, 2 only or 
when N is very small (<10 say). 

• I have no evidence that DDFM=KR is dangerous, and should 
allow for better estimation of SD, which is often a Bayesian’s 
argument against this approach. 
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The Bayesian solution 

• Nearly all the work in this area has been done using 
Winbugs. 

 

• Here we show how to fit the same models using the 
MCMC procedure. 
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Winbugs 

• NICE web site includes code from Bristol group. 

• Messy and difficult to read 

• Expressed in terms of differences to some overall reference 
arm. 

• When overall reference does not appear in a study then have a 
“local” reference. 

• Statisticians do not need this as they simply have several fixed 
treatment effects with an arbitrary constraint (usually that one 
parameter is zero). 

 

• Much simpler Winbugs code is possible when using 
“flat” priors. 
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Issues with MCMC procedure 

• SAS 9.3 (SAS/Stat 12) 

• Take advantage of the RANDOM statement. 

 

• Both versions 

• Use a fast machine, but especially for 9.2. 

 

Ideas the same as for Normal, except need explicit random effects and logistic 
link and Binomial error. 

 

P=1-(1/(1+exp(mu))); 

model R ~ binomial(n=N, p=P); 
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Random effects model (SAS 9.3) 

proc mcmc data=betablock3  nmc=200000 seed=246810; 

random Studyeffect ~general(0) subject=Study init=(0) ; 

random Treat ~general(0) subject=Trt  init=(0) zero=last monitor=(Treat); 

parms logsd 0; 

prior logsd ~ general(logsd,lower=log(0.01) upper=log(5)); 

mysd=exp(logsd); 

random RE ~normal(0,sd=mysd/sqrt(2)) subject=_OBS_ init=(0); 

Mu=  Studyeffect + Treat +RE; 

P=1-(1/(1+exp(mu))); 

model R ~ binomial(n=N, p=P); 

run; 
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Random effects solution (MCMC 9.3) 
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Posterior Summaries 

Parameter N Mean Standard 

Deviation 

Percentiles 

25% 50% 75% 

logsd 200000 0.1973 0.2093 0.0572 0.1960 0.3393 

Treat_A 200000 -0.7604 0.4706 -1.0645 -0.7537 -0.4527 

Treat_B 200000 -0.5773 0.3203 -0.7865 -0.5782 -0.3684 



Diagnostics 
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Bayesian indirect comparison models 

• If we accept flat priors on the linear predictor scale for 
fixed effects of treatment and study then Omega (1) and 
Omega (2) are identical. 

• Use Omega (1) as it is much easier. 

 

•  I do not see any reason for 

• Informative priors for study 

• Study as a Random effect. 

 ... but if you do then Omega(2) is most likely necessary. 

 So use the following sets of code and amend priors. 
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proc mcmc data=betablock3  nmc=200000 thin=20 seed=246810 monitor=(mysd); 

random Studyeffect ~general(0) subject=Study init=(0) ; 

random Treat ~general(0) subject=Trt  init=(0) zero=last monitor=(Treat); 

parms logsd 0; 

prior logsd ~ general(logsd,lower=log(0.01) upper=log(5)); 

mysd=exp(logsd); 

array zero[3] (0,0,0); 

array RE[3]; 

random RE ~mvnar(zero,sd=mysd/sqrt(2),0) subject=study; 

sum=0; 

do i=1 to narm; 

 sum=sum+RE[i]*((i=index) - (1/narm) ) / sqrt(2);   Weighted sum like Yesterday. 

end; 

Mu=  Studyeffect + Treat +  sum; 

P=1-(1/(1+exp(mu))); 

model R ~ binomial(n=N, p=P); 

run; 
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proc mcmc data=betablock3  nmc=200000 thin=20 seed=246810 monitor=(mysd); 

random Studyeffect ~general(0) subject=Study init=(0) ; 

random Treat ~general(0) subject=Trt  init=(0) zero=last monitor=(Treat); 

parms logsd 0; 

prior logsd ~ general(logsd,lower=log(0.01) upper=log(5)); 

mysd=exp(logsd); 

array zero[3] (0,0,0); 

array RE[3]; 

random RE ~mvnar(zero,sd=mysd/sqrt(2),0) subject=study; 

sum=0; 

do i=1 to narm; 

 sum=sum+RE[i];           Take off the average of the random effects 

end; 

Mu=  Studyeffect + Treat + RE[index] - sum/narm; 

P=1-(1/(1+exp(mu))); 

model R ~ binomial(n=N, p=P); 

run; 
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Omega (2) route 

• Neither of these mixes well. (See next two slides) 

 

• But we do not need to go down either of these routes.  
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Method 1 
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Method 2 
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MCSE is larger as one might expect. 
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Posterior Summaries 

Paramet

er 

N Mean Standard 

Deviatio

n 

Percentiles 

25% 50% 75% 

mysd 10000 1.1267 0.2775 0.9492 1.1147 1.3175 

Treat_A 10000 -0.7946 0.4027 -1.0716 -0.7788 -0.5130 

Treat_B 10000 -0.6554 0.2065 -0.7997 -0.6592 -0.5153 

Monte Carlo Standard Errors 

Parameter MCSE Standard 

Deviation 

MCSE/SD 

mysd 0.0698 0.2775 0.2514 

Treat_A 0.0705 0.4027 0.1750 

Treat_B 0.0221 0.2065 0.1070 



Summary Binomial data (Bayesian) 

• MCMC code is very simple. 

 

• Using SAS 9.3, no need to change program from 
application to application as long as variable names, 
Study, Trt, R and N remain unchanged. 

 

• Do monitor the diagnostics plots and MCSE. 

• Difficult data sets will make mixing difficult and require long runs 
with lots of thinning. [See Workshop example.] 
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Other forms of Data 

• Lastly we consider two further types of source data. 

 

• Count data. 

 

• Time to event . 
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COUNT DATA 
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Poisson data 

• Not common in meta-analyses. 

• Often total Count of events and Total length of exposure 
in each arm, at study level. 

• Log link with Log[Exposure] as offset. 

• Random effect on Study*Treatment has similar effect as 
a random effect for over-dispersion. 

• PQL with REML (default RSPL) should work well. Better 
than Gaussian Quadrature with Omega (2). 

• Bayesian straightforward adaption to MCMC code. 

• But ... 
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Over-dispersion 

• But what about over-dispersion? 

 

• Within a trial over-dispersion usually handled by using 
estimated scale factor, Negative Binomial distribution, 
or a normal random effect on linear predictor. 

 

• Usually represents variability in rate from subject to 
subject (frailty). 

• This subtlety is sometimes lost in reporting. 
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• Say we have total Count in each arm in a study and the 
relative exposure. 

• Use Log link function. 

• Use log(exposure) as offset from arm to arm. 

• Random effect for frailty should have variance 
proportional to 1/N the number of subjects in arm. 

• Heterogeneity (random effects model) will have similar 
random effect but with constant variance. 

• It is difficult to estimate both from study level data. 
Better to use assessment of frailty from within each 
study (as with Normal data). 

• Dispersion parameter from Negative Binomial. 

• Scale parameter if trial uses Poisson with estimated scale. 
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• Negative Binomial 

• V(Y) = (μ + k μ2) where k is scale parameter. 

• Some confusion as r=1/k is often quoted as Negative Binomial 
parameter. 

• Use individual k from each trial, or perhaps share across trials. 

• GLIMMIX can handle single scale parameter. Not separate for 
each trial. 

• Possibly set SE=sqrt(μ + k μ2) and treat as Normal with MIXED. 

• Or use MCMC and have separate Negative Binomial models 
with known k for each trial. If SE for k is known include as prior. 

• Beware use of simple Poisson regression models. 

• Underestimating within trial variation will increase between 
study variation. But overall it will inflate Type 2 error for RE 
model. 
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• Perhaps simply use estimate of hazard ratios and 
normal approximation. See next section. 

 

• Should we be worrying about over-dispersion in 
Binomial data? 
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TIME TO EVENT DATA 
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Time to event data. 
Usually modelled in terms of the hazard function. 
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Hazard data 
Correlation of multiple comparisons to same control 
within a trial. 

74 



Easy route 

• Build data back to arm level, rather than difference 
between arms. 

• Treat Study effect as fixed with flat prior (important for 
this to work). 

• Set Y1=0 for reference arm in this study. 

• Set Yi= Log Hazard Ratio for treatment i versus 
reference. 

• Set SE(Yi)
2=SE(LHRi)

2 N1/(N1+Ni) 

while set SE(Y1)
2 as any of SE(LHRi)

2 Ni/(N1+Ni) which 
should all be very similar. 

Then proceed as for normal data. 
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Example: Woods et al,  
Mortality in COPD. 

Woods,  Hawkins & Scott (2010) BMC Med. Res. Methodology, 10:54. 

Part of original data from Baker et al (2009) Pharmacotherapy, 29(8)891-905. 

 
76 



Combining Time to event with event rate 
data. 
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Frequency data 

• Use Complementary log-log link with Binomial error. 

• Note that this is close to logistic when rate is small. 

• But we are assuming a different model from the usual 
log-odds-ratio model. 
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Computation. 
Different types of data. 

• In GLIMMIX can we specify distribution and link function 
in the data. 

 

• In MCMC we can calculate the log-likelihood directly for 
the different types of data and specify using, 

Model y ~ general(log likelihood); 

 

• In Winbugs, separate arrays for each type of data, with 
associated distribution declarations. 
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data LHR; 
INPUT Study Trt  LHR 
SELHR ; 
WT=1/(SELHR**2); 
Dist=1; 
Link=1; 
N=1; 
Y=LHR; 
datalines; 
1 1  0   0.066  
1 2  0.055   0.063  
1 3  -0.154   0.070  
1 4  -0.209   0.072  
2 1  0   0.1435427  
2 2 -0.276   0.1435427  
; 
run; 
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data Binary; 

input Study TRT R N; 

WT=1; 

Dist=3; 

Link=5; 

Y=R; 

datalines; 

3 3  1 229 

3 1  1 227 

4 2  4 374 

4 3  3 372 

4 4  2 358 

4 1  7 361 

5 3  1 554 

5 1  2 270 

; 

run; 



GLIMMIX (Fixed model) 

proc glimmix data=alldata; 

class Trt Study ; 

model Y/N = Trt study /Dist=BYOBS(Dist) Link=BYOBS(Link)  Solution 
ddfm=None; 

parms 1 / Hold=1; 

weight WT; 

estimate "SFC - Placebo"  Trt -1 1 0 0  /CL; 

estimate "Sal - Placebo"  Trt -1 0 1 0  /CL; 

estimate "FP  - Placebo"  Trt -1 0 0 1  /CL; 

ods output estimates=est; 

run; 
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Transform back to Hazard Ratios 

* Transform back onto the HR scale; 

data est2; 

set est; 

HR=exp(ESTIMATE); 

LHR=exp(lower); 

UHR=exp(upper); 

run; 
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Glimmix 
Hazard ratio estimates 
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Label HR LowerHR UpperHR 

SFC - 

Placebo 

0.77214 0.64125 0.92974 

Sal - Placebo 0.81568 0.67992 0.97854 

FP - Placebo 0.98552 0.83839 1.15848 

 

 



proc mcmc data=Alldata  NBI=10000 NMC=100000 thin=10 Stats=all 
mssing=AC seed=12345 monitor=(SFC_Plac Sal_Plac FP_Plac); 

random Study_eff ~ general(0) subject=study init=(0); 

random trt_eff ~general(0) subject=trt zero=first monitor=(trt_eff) init=(0); 

mu= Study_eff + Trt_eff ; 

if R>= 0 then do; 

 * Binomial data; 

    p = logistic(mu); 

 ll= logpdf("Binomial",r,p,n); 

end; 

else do; 

 * Hazard ratio data; 

 ll= logpdf("Normal",lhr,mu,selhr); 

end; 

model study ~ general(ll); 
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MCMC fixed effects 



array effect[4]; 

effect[trt]=trt_eff; 

beginnodata; 

 SFC_Plac=exp(effect[4]-effect[1]); 

 Sal_Plac=exp(effect[3]-effect[1]); 

 FP_Plac=exp(effect[2]-effect[1]); 

endnodata; 

run; 

 

Side effect of using RANDOM statement for treatment effect. 

• Need to copy estimates into an array and then use these to build the 
hazard ratios. 
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Fixed effects using MCMC 
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Posterior Summaries 

Parameter N Mean Standard 

Deviation 

Percentiles 

25% 50% 75% 

SFC_Plac 10000 0.7757 0.0731 0.7256 0.7725 0.8233 

Sal_Plac 10000 0.8202 0.0764 0.7673 0.8161 0.8701 

FP_Plac 10000 0.9895 0.0814 0.9319 0.9864 1.0432 

trt_eff_2 10000 -0.0139 0.0822 -0.0705 -0.0137 0.0423 

trt_eff_3 10000 -0.2026 0.0929 -0.2648 -0.2032 -0.1391 

trt_eff_4 10000 -0.2584 0.0942 -0.3208 -0.2581 -0.1944 



Diagnostics are beautiful. 
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Random effects GLIMMIX 

proc glimmix data=alldata method=RSPL;; 

class Trt Study ; 

model Y/N = Trt study /Dist=BYOBS(Dist) Link=BYOBS(Link)  Solution 
ddfm=KR; 

random intercept /subject=Study*Trt ; 

parms 1 1 / Hold=(2); 

weight WT; 

estimate "SFC - Placebo"  Trt -1 0 0 1  /CL ; 

estimate "Sal - Placebo"  Trt -1 0 1 0  /CL ; 

estimate "FP  - Placebo"  Trt -1 1 0 0  /CL ; 

ods output estimates=estr; 

run; 
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Without and with DDFM=KR. 
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Label HR LowerHR UpperHR 

SFC - Placebo 0.71404 0.04978 10.2415 

Sal - Placebo 0.75436 0.04901 11.6119 

FP - Placebo 0.90412 0.15717 5.2010 

 

 

Label HR LowerHR UpperHR 

SFC - Placebo 0.71404 0.45656 1.11673 

Sal - Placebo 0.75436 0.48689 1.16874 

FP - Placebo 0.90412 0.62200 1.31419 



Always beware KR d.f. That are this small. 
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Estimates 

Label Estimate Standard 

Error 

DF t Value Pr > |t| Alpha Lower Upper 

SFC - 

Placebo 

-0.3368 0.2096 1 -1.61 0.3544 0.05 -3.0001 2.3265 

Sal - Placebo -0.2819 0.2152 1 -1.31 0.4150 0.05 -3.0158 2.4520 

FP - Placebo -0.1008 0.1826 1.138 -0.55 0.6697 0.05 -1.8504 1.6488 



MCMC [Random effect using SAS 9.3] 

parms logsd 0; 

prior logsd ~ general(logsd, upper=log(5)); 

mysd=exp(logsd); 

random randeff ~ normal(0, sd=mysd/sqrt(2)) subject=_obs_ ; 

 

mu= Study_eff + Trt_eff + randeff; 
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Hazard ratios from random effects model 
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Posterior Summaries 

Parameter N Mean Standard 

Deviation 

Percentiles 

25% 50% 75% 

SFC_Plac 10000 0.7027 0.2973 0.5372 0.6871 0.8101 

Sal_Plac 10000 0.7143 0.2394 0.5672 0.7159 0.8479 

FP_Plac 10000 0.8946 0.2659 0.7374 0.8912 1.0259 

mysd 10000 0.3918 0.3206 0.1766 0.3115 0.5134 

Posterior Intervals 

Parameter Alpha Equal-Tail Interval HPD Interval 

SFC_Plac 0.050 0.2782 1.4113 0.2146 1.2378 

Sal_Plac 0.050 0.2525 1.2214 0.1957 1.1397 

FP_Plac 0.050 0.4236 1.4752 0.3631 1.3769 

mysd 0.050 0.0309 1.2449 0.00793 1.0135 



Note that consistent within MCSE.  
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Only took 5 seconds so can afford to throw lots of 

iterations at it. 

Monte Carlo Standard Errors 

Parameter MCSE Standard 

Deviation 

MCSE/SD 

SFC_Plac 0.0224 0.2973 0.0755 

Sal_Plac 0.0183 0.2394 0.0766 

FP_Plac 0.0194 0.2659 0.0729 

mysd 0.0288 0.3206 0.0898 

 

 



Mixing was poor 
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Why it is difficult! 
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Using NBI=10,000 NMC=1,000,000 thin=10  
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Posterior Summaries 

Parameter N Mean Standard 

Deviation 

Percentiles 

25% 50% 75% 

SFC_Plac 100000 0.6968 0.3091 0.5446 0.6893 0.8083 

Sal_Plac 100000 0.7292 0.2462 0.5884 0.7306 0.8508 

FP_Plac 100000 0.8942 0.2988 0.7433 0.8917 1.0178 

mysd 100000 0.3772 0.3241 0.1563 0.2944 0.5025 

Posterior Intervals 

Parameter Alpha Equal-Tail Interval HPD Interval 

SFC_Plac 0.050 0.2287 1.2886 0.1418 1.1285 

Sal_Plac 0.050 0.2712 1.2538 0.2151 1.1586 

FP_Plac 0.050 0.3838 1.4696 0.3250 1.3744 

mysd 0.050 0.0200 1.2209 0.00199 0.9997 
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Final trick to help mix 

parms logsd 0 /slice; 

prior logsd ~ general(logsd, upper=log(5)) ; 

mysd=exp(logsd); 

random randeff ~ normal(0, sd=1) subject=_obs_ ; 

 

mu= Study_eff + Trt_eff + randeff*mysd/sqrt(2); 
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Improvement in effective sample size 
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Effective Sample Sizes 

Parameter ESS Autocorrelation 

Time 

Efficiency 

SFC_Plac 233.0 42.9210 0.0233 

Sal_Plac 233.6 42.8141 0.0234 

FP_Plac 299.9 33.3411 0.0300 

mysd 435.9 22.9411 0.0436 

 

 

 

Effective Sample Sizes 

Parameter ESS Autocorrelation 

Time 

Efficiency 

SFC_Plac 175.6 56.9574 0.0176 

Sal_Plac 170.3 58.7182 0.0170 

FP_Plac 188.2 53.1217 0.0188 

mysd 124.1 80.5837 0.0124 

 

 



Summary using SAS for indirect 
comparisons. 

• As long as we express model as a GLMM then we can 
use either GLIMMIX or MCMC procedures. 

• GLIMMIX 

• Preferably use PQL with REML (method=RSPL) but be aware 
of the problem with Binary data and also with very small rates 
for binomial data. 

 

• MCMC 

• Issue of aliasing of fixed and random effects handled 
automatically as long as use flat priors for treatment and study. 

• The Random statement in SAS 9.3 helps makes code 
transparent. 
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Summary 

• Random effects model have fixed margins for Study 
and Treatment but Random interaction. 

• This is the source of much of the misunderstandings. 

 

• Use Winbugs if that makes life easy for you. 

 

• But GLIMMIX and MCMC procedures make it easy in 
SAS. 

 

• GLIMMIX with RSPL will often give good quick answers 
without having to mess around with MCMC. 
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Some final thoughts. (1) 

• Broken networks 

• Do not fix them by simply merging trials ( Bad Programmer’s 
solution). 

• Do not fix by using random study effects ( Bad Statistician’s 
solution) 

• You cannot bridge. 
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Some final thoughts. (2) 

• What makes MCMC and Winbugs difficult to control. 

• A flat likelihood for the random effect SD near zero. 

• A network with a weak bridge. 

 

• What makes GLIMMIX with PQL behave less well. 

• Binomial data with very low frequencies. 
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WORKSHOP 3 

1 



Workshop 

• Binary data / Binomial data. 

 

• Here we will experiment with a more complex network. 
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Cipriani et al 

Cipriani A, Furukawa TA, Salanti G, Geddes JR, Higgins 
JP, Churchill R, et al. 

Comparative efficacy and acceptability of 12 new-
generation antidepressants: a multiple-treatments meta-
analysis. 

Lancet 2009 Feb 28;373(9665):746-758; 

 

3 



Cipriani et al 

Cipriani A, Furukawa TA, Salanti G, Geddes JR, Higgins 
JP, Churchill R, et al. 

Comparative efficacy and acceptability of 12 new-
generation antidepressants: a multiple-treatments meta-
analysis. 

Lancet 2009 Feb 28;373(9665):746-758; 

The acceptability data are used as an example data set in 

Interpreting Indirect Treatment Comparisons and Network 
Meta-Analysis forHealth-Care Decision Making: Report 
of the ISPOR Task Force on Indirect Treatment 
Comparisons Good Research Practices: Part 1. 

 Value in Helath 14 (2011) 417– 428; doi:10.1016/j.jval.2011.04.002  
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Summary 
 

“Background Conventional meta-analyses have shown 
inconsistent results for efficacy of second-generation 
antidepressants. 

We therefore did a multiple-treatments meta-analysis, 
which accounts for both direct and indirect 
comparisons, to assess the effects of 12 new-
generation antidepressants on major depression.” 
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Studies with Acceptability data. 

• 112 studies; 

• 226 records (Study*Treat); 

• 12 treatments; 
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Actions 

• Follow the steps in the handout. 

 

• Program file is Workshop3.sas 

 

• We will discuss our results at the end. 
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Random effects model 

Title1 "Random effect with RSPL (proc GLIMMIX)"; 

proc glimmix data=Cip2 method=RSPL; 

class study Treatment ; 

model acceptR/DropN = Study Treatment /link=logit 
dist=bin ddfm=kr; 

random intercept /subject=Study*Treatment ; 

lsmeans Treatment /diff=control('fluoxetine') cl oddsratios; 

run; 
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Random effects 

10 

Covariance Parameter Estimates 

Cov Parm Subject Estimate Standard 

Error 

Intercept Study*treatm

ent 

0.008043 0.009374 

 

 

sqrt(0.008043*2) = 0.1268306 

 



Random effects (GLIMMIX) 

11 

Differences of treatment Least Squares Means 

treatment _treatment Estimate Standard 

Error 

DF t Value Pr > |t| Alpha Lower Upper Odds Ratio Lower 

Confidence 

Limit for 

Odds 

Ratio 

Upper 

Confidence 

Limit for 

Odds 

Ratio 

bupropion fluoxetine 0.1101 0.09692 43.95 1.14 0.2621 0.05 -0.08524 0.3054 1.116 0.918 1.357 

citalopram fluoxetine 0.1080 0.1010 51.84 1.07 0.2899 0.05 -0.09471 0.3108 1.114 0.910 1.365 

duloxetine fluoxetine -0.1786 0.1375 44.94 -1.30 0.2005 0.05 -0.4555 0.09829 0.836 0.634 1.103 

escitalopra

m 

fluoxetine 0.1716 0.09308 53.95 1.84 0.0708 0.05 -0.01505 0.3582 1.187 0.985 1.431 

fluvoxamin

e 

fluoxetine -0.2033 0.1380 103 -1.47 0.1437 0.05 -0.4770 0.07037 0.816 0.621 1.073 

milnacipran fluoxetine -0.03215 0.1562 69.31 -0.21 0.8375 0.05 -0.3437 0.2794 0.968 0.709 1.322 

mirtazapine fluoxetine -0.03296 0.1136 62.62 -0.29 0.7726 0.05 -0.2600 0.1941 0.968 0.771 1.214 

paroxetine fluoxetine -0.09970 0.07216 39.02 -1.38 0.1750 0.05 -0.2457 0.04627 0.905 0.782 1.047 

reboxetine fluoxetine -0.3582 0.1415 55.91 -2.53 0.0142 0.05 -0.6417 -0.07474 0.699 0.526 0.928 

sertraline fluoxetine 0.1226 0.08890 77.63 1.38 0.1719 0.05 -0.05441 0.2996 1.130 0.947 1.349 

venlafaxine fluoxetine -0.06394 0.07687 62.92 -0.83 0.4087 0.05 -0.2176 0.08967 0.938 0.804 1.094 
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• Now move to MCMC using SAS 9.3 
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The run below with 200,000 takes 6 minutes. 
Version in program code uses 20,000 (45secs) 

proc mcmc data=Cip2  nmc=200000 thin=20 seed=246810 monitor=(mysd OR) outpost=outp1; 

random Studyeffect ~general(0) subject=ShortStudy init=(0) ; 

random Treat_eff ~general(0) subject=Treatment  init=(0) zero=last; * monitor=(Treat_eff); 

parms logsd 0 /slice; 

prior logsd ~ general(logsd, upper=log(5)); 

mysd=exp(logsd); 

random RE ~normal(0,sd=1) subject=_OBS_ init=(0); 

Mu=  Studyeffect + Treat_eff + RE*mysd/sqrt(2); 

P=1-(1/(1+exp(mu))); 

model AcceptR ~ binomial(n=DropN, p=P); 

array effect[12]; 

array OR[12]; 

effect[trt]=treat_eff; 

beginnodata; 

 do i=1 to 12; 

  * contrasts to fluoxetine; 

  OR[i]=exp(effect[i]-effect[5]); 

 end; 

endnodata; 

run; 
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Posterior Summaries 

Parameter N Mean Standard 

Deviation 

Percentiles 

25% 50% 75% 

mysd 10000 0.1219 0.0662 0.0710 0.1217 0.1697 

OR1 10000 1.1221 0.1126 1.0432 1.1163 1.1929 

OR2 10000 1.1189 0.1159 1.0379 1.1136 1.1937 

OR3 10000 0.8424 0.1212 0.7579 0.8333 0.9170 

OR4 10000 1.1865 0.1130 1.1067 1.1816 1.2590 

OR5 10000 1.0000 0 1.0000 1.0000 1.0000 

OR6 10000 0.8225 0.1161 0.7427 0.8126 0.8935 

OR7 10000 0.9784 0.1559 0.8675 0.9665 1.0767 

OR8 10000 0.9733 0.1125 0.8950 0.9668 1.0441 

OR9 10000 0.9066 0.0663 0.8606 0.9038 0.9492 

OR10 10000 0.7030 0.1018 0.6310 0.6955 0.7666 

OR11 10000 1.1369 0.1054 1.0642 1.1309 1.2029 

OR12 10000 0.9394 0.0734 0.8892 0.9363 0.9861 

 

 

Posterior Intervals 

Parameter Alpha Equal-Tail Interval HPD Interval 

mysd 0.050 0.00707 0.2511 0.000183 0.2319 

OR1 0.050 0.9206 1.3660 0.9115 1.3469 

OR2 0.050 0.9072 1.3596 0.9101 1.3619 

OR3 0.050 0.6292 1.1000 0.6137 1.0771 

OR4 0.050 0.9776 1.4248 0.9625 1.4046 

OR5 0.050 1.0000 1.0000 1.0000 1.0000 

OR6 0.050 0.6207 1.0735 0.6054 1.0538 

OR7 0.050 0.7079 1.3115 0.6948 1.2922 

OR8 0.050 0.7736 1.2138 0.7605 1.1964 

OR9 0.050 0.7836 1.0457 0.7741 1.0337 

OR10 0.050 0.5247 0.9198 0.5153 0.9046 

OR11 0.050 0.9491 1.3606 0.9404 1.3473 

OR12 0.050 0.8052 1.0930 0.7955 1.0809 
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Code SAS 9.2 

• Need to add index for Study as well as Treatment. 

 

• The random effect RE has lots of levels. 

• Break it’s PARMS statement up into several to reduce 
dimensionality of Metropolis Hastings. 

 

• The SAS 9.3 solution is much faster. 
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Further Network Meta-Analysis 
Models 

Neil Hawkins, PhD, Cstat 

(http://neilhawkins.wordpress.com/) 

Vice President, Health Economics, Icon PLC 

Honorary Professor, (Health Economics and Health Technology Assessment), University of Glasgow   
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Case Studies 

2 

1. Co-variable adjustment 

2. Inconsistency 

3. Complex interventions 

4. Multiple outcomes 

5. Multiple follow-up times 

6. Propensity score methods 
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Network of comparisons of fluoride 
therapies 

4 



• Effect measure: standardised change in DMFS 
(decayed, missing, filled tooth surfaces) 
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• Direct estimate of effect of toothpaste compared with 
rinse: 𝛿𝑇𝑅

𝐷  

• Indirect estimate via common placebo comparator: 
𝛿𝑇𝑅
𝐼 = 𝛿𝑇𝑃

𝐷 -𝛿𝑅𝑃
𝐷  

• Incoherence: ϕ = 𝛿𝑇𝑅
𝐷 -𝛿𝑇𝑅

𝐼  

• In absence of multi-arm trials: ϕ = 𝛿𝑇𝑅
𝐷 - 𝛿𝑇𝑅

𝐼  

• Variance: var(ϕ) = 𝑣𝑎𝑟(𝛿𝑇𝑅
𝐷 )- var(𝛿𝑇𝑅

𝐼 )  

Incoherence 
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Estimates of incoherence 

• Opportunity to observe incoherence 

      depends on network structure 

 

• Power to detect incoherence 
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Potential Covariables 
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Covariable Regression Model 

𝛿 𝐹𝐶,𝑖 = 𝛿
′
𝐹𝐶,𝑖 + β 𝑌𝑒𝑎𝑟𝑖 − 𝑌𝑒𝑎𝑟0  

𝛿′ 𝐹𝐶,𝑖 = 𝑁( 𝛿′ 𝐹𝐶 , 𝜏𝐹𝐶
2 ) 

Treatment effect for 

fluoride treatment vs 

control (placebo or not 

treatment) in year 0 

Covariable effects 

common across 

fluoride treatments 

Contrast dependent 

random treatment 

effects variance. 
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Effect of Adjustment 
Not parameterisation invariant 

Only treatment 

effects vs, control 

are modified 
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Lumping and splitting:  Different assumptions 
regarding the equivalence of Placebos 

Only possible as the network is well connected 
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• Different regression coefficient for each comparison 
𝛿 𝑏𝑘 = 𝑑𝐴𝑘 −𝑑𝐴𝑏 +(𝛽𝐴𝑘−𝛽𝐴𝑏). 𝑋𝑗 

• Exchangeable regression co-efficients 
𝛿 𝑏𝑘 = 𝑑𝐴𝑘 −𝑑𝐴𝑏 +(𝛽𝐴𝑘−𝛽𝐴𝑏). 𝑋𝑗 

𝛽𝐴𝑘~𝑁 𝛽, σ2𝛽  

• Common regression co-efficient 
𝛿 𝑏𝑘 = 𝑑𝐴𝑘 −𝑑𝐴𝑏 +𝛽. 𝑋𝑗 

 

Covariable Regression Models 
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Different Co-efficients 
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Exchangeable Co-efficients 
Shrinkage 
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Common Co-efficient 
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Even more models 
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Model Comparison 
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Results 

20 
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• Consistency (                            ) 

• Heterogeneity 

• Variation within a comparison (𝛿𝐴𝐵,𝑖 ≠ 𝛿𝐴𝐵,𝑗) 

• Loop inconsistency 

• Differences in treatment  

 effect modifiers between comparisons 

• Average treatment effects  

 not consistent around loop 

• Design inconsistency 

• Treatment effects vary by study design (design=comparator set) 

Definitions of inconsistency 

A 

B C 

𝛿𝐴𝐶 = 𝛿𝐴𝐵+𝛿𝐵𝐶 
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• Heterogeneity 

• Reflects presence of treatment effect modifiers 

• Only type of inconsistency if all trials include all comparators 

• Loop inconsistency 

• Arises because of missing comparators 

• Design inconsistency 

• Design = study level covariate that modifies treatment effects.  

• Special case of heterogeneity 

•  Not distinguishable from loop inconsistency if all studies two 
armed  

• 25% of comparative studies have >2 arms 

Observations 
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𝜇𝑑𝑖
𝐴𝐽
= 𝛿𝐴𝐽 + 𝛽𝑑𝑖

𝐴𝐽
+ 𝜔𝑑

𝐴𝐽
 

  

  

Consistency Model 

Estimated Treatment effect  

for treatment A vs.  

Treatment J from study i with 

design d 

Main Treatment effect  

Within trial between  

design variation  

(aka heterogeneity)  

Random Effect 

between design variation (aka 

inconsistency)  

Fixed Effect 
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An Example 

A 

B C 

Treatment 

Trial 

Design 

A B C 

ABC Ref 𝛿𝐴𝐵 𝛿𝐴𝐶  

AB Ref 𝛿𝐴𝐵 +𝜔2
𝐴𝐵 - 

AC Ref - 𝛿𝐴𝐶 +𝜔3
𝐴𝐶  

BC Ref 𝛿𝐴𝐵 𝛿𝐴𝐶 +𝜔4
𝐴𝐶  
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Available Trials 
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• Single effect model (all interventions created equal) 

 

 

• Additive main effects (whole = sum of individual parts) 

 

 

• 2-way interaction model (whole = sum of pairs) 

 

 

• Full interaction model (each intervention is unique) 

Models for Intervention Effects 

𝑑𝑘 = 𝑑. 

𝑑𝑘 = 𝑑𝐸𝐷𝑈 × 𝐼𝑘⊃𝐸𝐷𝑈 + 𝑑𝐵𝐸𝐻 × 𝐼𝑘⊃𝐵𝐸𝐻 + 𝑑𝐸𝐷𝑈∗𝐵𝐸𝐻
× 𝐼 𝑘⊃𝐸𝐷𝑈,𝐵𝐸𝐻 +⋯ 

𝑑𝑘 = 𝑑𝐸𝐷𝑈 × 𝐼𝑘⊃𝐸𝐷𝑈 + 𝑑𝐵𝐸𝐻 × 𝐼𝑘⊃𝐵𝐸𝐻 +⋯ 

𝑑𝑘 = 𝑑𝑘 
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Model Comparison 
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Results 
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Probability of being most effective 
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Trial Data 
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Disease Model 

34 



Time to alleviation of fever: 

 𝑇𝐹,𝑗,𝑘~𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝛼𝐹,𝑗,𝑘 , 𝛽𝐹,𝑗,𝑘) 

Time to alleviation of symptoms: 

 𝑇𝑆,𝑗,𝑘~𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝛼𝑆,𝑗,𝑘 , 𝛽𝑆,𝑗,𝑘) 

Shape parameters constrained to be positive (decreasing 
hazard) and exchangeable between study, treatment and 
outcome 

 𝛼𝐹,𝑗,𝑘 , 𝛼𝑆,𝑗,𝑘~𝐵𝑒𝑡𝑎(𝑎,b) 

 

Time to event models (1) 
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Symptoms alleviate after fever: 

 𝛽𝑆,𝑗,𝑘 ≥ 𝛽𝐹,𝑗,𝑘 

Placebo scale parameters unconstrained: 

 log (𝛽𝐹,𝑗,1) = 𝜇𝐹,𝑗  

 log (𝛽𝑆,𝑗,1) = 𝜇𝐹,𝑗 + 𝛾𝑗  

 𝛾𝑗 +𝑁 𝑔, 𝑣  

Time to event models (2) 
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Symptoms alleviate after fever: 

 𝛽𝑆,𝑗,𝑘 ≥ 𝛽𝐹,𝑗,𝑘 

Placebo scale parameters unconstrained: 

 log (𝛽𝐹,𝑗,1) = 𝜇𝐹,𝑗  

 log (𝛽𝑆,𝑗,1) = 𝜇𝐹,𝑗 + 𝛾𝑗  

 𝛾𝑗 +𝑁 𝑔, 𝑣  

Time to event models (2) 
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log scale parameters transitive: 

 
log (𝛽𝐹,𝑗,𝑘) = 𝜇𝐹,𝑗 + 𝛿𝐹,𝑗,𝑘 

 
log (𝛽𝑆,𝑗,𝑘) = 𝜇𝐹,𝑗 + 𝛾𝑗 +max (𝛿𝑆,𝑗,𝑘 , 𝛿𝐹,𝑗,𝑘 − 𝛾𝑗) 

  

Indirect comparison of treatment effects 
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log scale parameters transitive: 

 

𝛿𝑆,𝑗,𝑘
𝛿𝐹,𝑗,𝑘

~𝑁2
𝑑𝑆,𝑘
𝑑𝐹,𝑘

,
𝜎𝑆
2 𝜎𝑆𝜎𝐹𝜌

𝜎𝑆𝜎𝐹𝜌 𝜎𝐹
2 

  

Random effects correlated 
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• Median times (e.g. median time until alleviation of 
symptoms) 

𝑦𝑆,𝑗,𝑘
𝑚𝑒𝑑𝑖𝑎𝑛~𝑁(𝛽𝑆,𝑗,𝑘(𝑙𝑛2)

1/𝛼𝑆,𝑗,𝑘 , (𝑠𝑒𝑆,𝑗,𝑘
𝑚𝑒𝑑𝑖𝑎𝑛)2) 

 

• Count data (e.g. number individual symptom-free by day 
28) 

𝑛𝑆,𝑗,𝑘
28 ~𝐵𝑖𝑛 𝑝𝑆,𝑗,𝑘

28 , 𝑁𝑗,𝑘  

 𝑝𝑆,𝑗,𝑘
28 = E(Pr (𝑇𝑠,𝑗,𝑘 < 28|𝑦𝑆,𝑗,𝑘

𝑚𝑒𝑑𝑖𝑎𝑛) 

 

Likelihoods 
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A range of possible models 
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Study Network 
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Model Options 

44 

• Absolute log hazard (ALH) or relative log hazards (LHR); 

common across time periods 

• Reference treatment response: fixed (F-B), mixed with random 

study by time period interaction (M-B), or random walk (RW-B); 

varies across time periods   

• Treatment effects 

– fixed (F-LHR) or random (R-LHR); common across time 

periods  

– random (R-LHR(t)), or random walk (RW-LHR); varies across 

time periods 

• Treatment effects variance: Homogeneous (Hom-V) or 

heterogeneous (Het-V) between treatments 



Illustrative Study Data 

Additional 

Log  

Hazard 

Per interval 

Time Point 
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Absolute log hazard model (ALH) 

Additional 

Log  

Hazard 

Per interval 

Time Point 
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Random Walk Baseline  
RW-B 

Additional 

Log  

Hazard 

Per interval 

+ + 
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Random Treatment Effect over Time  
R-LHR(t) 

Additional 

Log  

Hazard 

Per interval 

48 



Random Walk Treatment Effect 
RW-LHR(t) 

Additional 

Log  

Hazard 

Per interval 

+ + 
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• Series of models based on the piecewise exponential 
model 

• Need to select models for baseline hazard and relative 
treatment effect 

• Fixed 

• Random effects 

• Random walk   𝜇𝑗𝑢 = 𝑁 𝜇𝑗,𝑢−1, 𝜏
2
𝑟𝑤  
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Results 

51 
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Confounding by Trial Heterogeneity 

53 



• Individual Patient Data (IPD) is available for one trial and 
but not another (aggregate data only) 

• The trials are ‘matched’  by re-weighting patients in the 
IPD trial by their odds of being enrolled in the trial 
without IPD 

• Akin to the use of propensity scores in observational 
research   

Adjustment based on IPD 
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Results 

55 
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Discussion 

57 

• All examples of adjustment for heterogeneity 

• More data = more options for adjustment 

• Individual patient level data is useful 

• Confidence in the usefulness of the consistency 
constraint is essentially an empirical question 

 



APPLICATIONS OF NMA 

1 



NMA IN PHASE 2 

2 



415 3 



Purpose and methods 

• Compare the dose–response relationship for the 
efficacy end points ACR 20, 50, and 70 for the clinically 
available biologics in adult patients with RA 

• A regression method based on dose–response 
relationships to account for differences in efficacy as a 
function of dose 

• increases the precision of the estimated treatment effect at a 
particular dose 

• differences in treatment effect due to differences in patient 
populations can be quantified through parameters of the dose–
response relationship 
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Clinical evidence 

5 



Network diagram 
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Dose-response relationships - Emax 

7 



Estimated differences from placebo 
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Estimated mean differences from MTX 

9 



10 



Summary 

• The dose–response relationships for ACR 20, 50, and 
70 were quantified for the clinically available biologic 
DMARDs. 

• The dose–response-based meta-analysis provided 
insights into the relative efficacies across the different 
mechanisms of action and among the five anti-TNFs.  

• Head-to head comparative trials are needed to confirm 
these results. 
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NMA IN PHASE 2/3 
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Hypothetical – phase 3 existing data 

Drug 1                     PBO                 

Drug 1                     PBO 

Drug 2                     PBO 

Drug 2                     PBO 

Drug 3                     PBO 

Drug 4                     PBO 

Drug 4                     PBO 

Drug 5                     PBO 
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Simulate competitor key trial results 

Competitor 1            PBO 

Competitor 2            PBO 

Competitor 2            PBO 

Drug 1                     PBO                 

Drug 1                     PBO 

Drug 2                     PBO 

Drug 2                     PBO 

Drug 3                     PBO 

Drug 4                     PBO 

Drug 4                     PBO 

Drug 5                     PBO 
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Simulate indirect comparisons for future 

competitors 

Competitor 2) 

PBO 

Drug 1 

Drug 2 

Drug 3 

Drug 4 

Drug 5 

Competitor 1 
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Simulate power for Competitor 2 

PBO 

Drug 1 

Drug 2 

Drug 3 

Drug 4 

Drug 5 

Competitor 1 

16 



Summary 

• Simulating NMAs in phase 2/3 can improve trial designs 

• Preliminary NMAs can enable the impact of competitor 
data to be considered 

• Preliminary NMAs aid the planning for comparative 
effectiveness activities required for reimbursement  
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NMA FOR HTA - DENOSUMAB 
(PROLIA®) OSTEOPOROSIS 

18 
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Denosumab (Prolia®) NICE Health 
Technology Assessment (HTA) 

• Initial NICE scoping meeting Jan 2009 

• UK HTA core team created May 2009 

• Systematic review protocol created Jun 2009 

• Initial search completed 

• Research Project Plan created Oct 2009 

• Final NICE Scope issued in Nov 2009 

• Final and updated systematic review completed 

• HTA submitted Jan 2010 

• Preliminary recommendations (ACD) May 2010 

• Final guidance (FAD) Oct 2010 
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Flow of citations through review 
process • 6328 citations initially 

identified from MEDLINE, 
EMBASE, Cochrane, 
CINAHL 

213 studies 
included 

196 studies 
included 

145 studies 
included 

108 studies 
included 

92 studies 
included 

34 studies included 
for  indirect and mixed  
treatment comparison 

404 reports / 211 studies 
from original review and 

updates combined 

2 additional denosumab studies identified 
via bibliography searching 

(Kendler 2009 and Brown 2009) 

Publication Type/ Study Design  
• 2 citations with abstract only data,15 

citations with open-label design 

Study Population  
• 31 citations with GIOP, 14 citations with 

men, 5 citations with previously treated 

Study Intervention  
• 1 citation with intervention excluded (PTH), 

20 citations with off-label dosing,16 
citations with 2 active treatments combined 

Study Comparator  
• 16 citations where comparator not 

evaluated and no placebo control 

Study Outcome  
• 45 citations with non-fracture related 
outcomes, 10 citations reporting fractures 
not evaluated, 3 citations where raw data 

not extractable 

Exclusion criteria 

21 



Evidence network diagram - new 
vertebral fracture example 

Placebo 

Indirect analysis Head-to-head study 

Strontium 

Raloxifene 

Teriparatide 

Zoledronate 

Denosumab Alendronate 

Risedronate 

Etidronate 

Ibandronate 

1 Trial 

2 Trials 

3 Trials 

1 Trial 

1 Trial 1 Trial 

2 Trials 

2 Trials 

4 Trials 
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Fracture meta-analysis, adjusted IC & MTC: 
Comparators 

• Comparators 

• Strontium 

• Raloxifene 

• Teriparatide 

• Zoledronate 

• Oral BP 

• Alendronate 

• Risedronate 

• Etidronate 

• Ibandronate 
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Fracture meta-analysis, adjusted IC & MTC: 
Endpoints 

• Five main fracture types 

• Morphometric vertebral fractures 

• Clinical vertebral fractures 

• Nonvertebral fractures 

• Hip fractures 

• Wrist fractures 

 

• ‘Other’ fractures was also investigated but no consistent 
definition was available across studies or publications 

24 



Fracture meta-analysis, adjusted IC & MTC: 
Analysis sets 

• Primary analysis – evaluable population for 
morphometric vertebral fractures, ITT for others 

• Sensitivity analysis 

• ITT Population (morphometric vertebral fractures only) 

• All trials, including trials where fractures were captured as 
adverse events  

• All trials, including trials where fractures were captured as 
adverse events but excluding trials with additional sources of 
bias 

25 



Fracture meta-analysis, adjusted IC & MTC: 
Output Requirements 

• Comparative efficacy section of the NICE Single 
Technology Assessment (STA)  

• Meta analysis of fracture data for each comparator relative to a 
common control (placebo) 

• Adjusted indirect comparison for Dmab vs. comparator 

• Mixed treatment comparison  

• Comparator vs. placebo 

• Dmab vs. comparator 

• Input parameters for economic model 

• RR for each comparator vs. placebo 

• Subgroup analysis (t-score, age, prev fracture) 

26 



Fracture meta-analysis, adjusted IC & MTC: 
Available data for analysis (morph) 

27 



Indirect Treatment Comparison 

• Method 
 

• Step 1: Perform meta analysis with a common comparator, i.e. placebo 

 

• Step 2: Approach of Bucher et al adopted for RR 

 

Log RR of indirect comparison of A and B is 

lnRRAB = lnRRAC – lnRRBC 

 

Standard error is 

SE(lnRRAB) = √[SE(lnRRAC)2 + SE(lnRRBC)2] 

 
Bucher HC, Guyatt GH, Griffith LE and Walter SD. The Results of Direct and Indirect Treatment Comparisons in Meta-Analysis of 

Randomized Controlled Trials.  J Clin Epidemiol. (1997) 50 (6); 683-691. 
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Mixed Treatment Comparison 

• Method 

• Conducted in Winbugs with standard parameters 

• Based on OR methods in Lu and Ades (2004) and updated for relative 
risk 

• Method allows for check of heterogeneity of control arms 

• Zero count in one arm acceptable, but not in both arms 

• Non-informative priors used throughout 

 

29 



Mixed Treatment Comparison 

• Modelling 
 

Data Study Trt Count Total 

 1 1 4 85 

 1 9 6  90 

 2 2 78 981 

 2 9 145 965 

 .. 

Model  For study 1 

         ri ~ binomial(pi, ni) 

  Ln(pi) = m1  (control) 

  Ln(pi) = m1 + delta1  (exp) 

  delta1 ~ norm(  [d1-d9] , t
2) 

 

Results  Estimates for       d1, d2, d3, d4, d5 ,d6, d7, d8, d9 
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Testing for heterogeneity 

• Due to the small number of trials for each comparator, heterogeneity 

was statistically assessed by the I2 statistic and is presented in forest 

plots 

• The independent predictors of fracture risk assessed are trial level 

mean age, proportion of subjects with a prevalent vertebral fracture 

and mean BMD 

• Meta-regression techniques were used to investigate the relationship 

between the trial level covariates and trial level placebo fracture rate, 

RD and RR for the primary analysis set 

• The estimate and significance level of each covariate are 

summarised 
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Direct evidence 

32 

Ibandronate O ral(2.5) 0.506 (0.344, 0.744)

P lacebo C ontr olled Tr ials

C om par ison R R  (95%  C I)

E tidronate 0.464 (0.165, 1.307)

P lacebo C ontr olled Tr ials

C om par ison R R  (95%  C I)

R isedronate 0.619 (0.499, 0.768)

P lacebo C ontr olled Tr ials

C om par ison R R  (95%  C I)

A lendronate 0.564 (0.462, 0.687)

P lacebo C ontr olled Tr ials

C om par ison R R  (95%  C I)

Zoledronate 0.300 (0.239, 0.376)

P lacebo C ontr olled Tr ials

C om par ison R R  (95%  C I)

Teriparatide 0.347 (0.218, 0.553)

P lacebo C ontr olled Tr ials

C om par ison R R  (95%  C I)

R alox ifene 0.648 (0.539, 0.781)

P lacebo C ontr olled Tr ials

C om par ison R R  (95%  C I)

S trontium 0.737 (0.662, 0.820)

P lacebo C ontr olled Tr ials

C om par ison R R  (95%  C I)

D enosumab 0.325 (0.256, 0.412)

P lacebo C ontr olled Tr ials

C om par ison R R  (95%  C I)

Direct Comparison with Placebo - Morphometric Vertebral Fracture Risk

Fixed Effects Meta Analysis

(Primary Analysis)

Output: g_fx_rr_fixed_dir_morph.cgm (Date Generated: 07JAN2010: 13:21) Source Data: SDF.rr_fixed

Program: /statistics/amg162/osteo/hta/analysis/final/graphs/g_fx_rr_fixed_dir_morph.sas

RR < 1 favours comparator 

RR = Relative Risk, CI = Confidence Interval 

0.25 0.50 1 2



Adjusted indirect evidence 

33 

D enosumab vs . Ibandronate O ral(2.5) 0.642 (0.408, 1.011)

A djusted Indir ect C om par ison

C om par ison R R  (95%  C I)

D enosumab vs . E tidronate 0.700 (0.242, 2.024)

A djusted Indir ect C om par ison

C om par ison R R  (95%  C I)

D enosumab vs . R isedronate 0.525 (0.380, 0.725)

A djusted Indir ect C om par ison

C om par ison R R  (95%  C I)

D enosumab vs . A lendronate 0.576 (0.422, 0.786)

A djusted Indir ect C om par ison

C om par ison R R  (95%  C I)

D enosumab vs . Zoledronate 1.083 (0.779, 1.505)

A djusted Indir ect C om par ison

C om par ison R R  (95%  C I)

D enosumab vs . Teriparatide 0.936 (0.554, 1.581)

A djusted Indir ect C om par ison

C om par ison R R  (95%  C I)

D enosumab vs . R alox ifene 0.501 (0.370, 0.678)

A djusted Indir ect C om par ison

C om par ison R R  (95%  C I)

D enosumab vs . S trontium 0.441 (0.339, 0.573)

A djusted Indir ect C om par ison

C om par ison R R  (95%  C I)

Adjusted Indirect Treatment Comparison - Morphometric Vertebral Fracture Risk

Fixed Effects Meta Analysis

(Primary Analysis)

Output: g_fx_rr_fixed_indir_morph.cgm (Date Generated: 14DEC2009: 11:23) Source Data: SDF.rr_fixed_indir

Program: /statistics/amg162/osteo/hta/analysis/final/graphs/g_fx_rr_fixed_indir_morph.sas

0.25 0.50 1 2



Assessing sources of heterogeneity 
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Morphometric Vertebral Fracture - Placebo Response Rate vs. Mean Age

Output: g_fx_morph_scatter_pr_age_regression.cgm (Date Generated: 15JAN2010: 09:58) Source Data: SDF.mtc_morpvertebral

Program: /statistics/amg162/osteo/hta/analysis/final/graphs/g_fx_morph_scatter_pr_age_regression.sas

Regression Line is estimated using meta regression  

The size of the circles are propotional to the inverse variance
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Assessing sources of heterogeneity 
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Morphometric Vertebral Fracture - Relative Risk vs. Mean Age

Output: g_fx_morph_scatter_rr_age_regression.cgm (Date Generated: 15JAN2010: 09:58) Source Data: SDF.mtc_morpvertebral

Program: /statistics/amg162/osteo/hta/analysis/final/graphs/g_fx_morph_scatter_rr_age_regression.sas

Regression Line is estimated using meta regression  

The size of the circles are propotional to the inverse variance
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Assessing sources of heterogeneity 
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Morphometric Vertebral Fracture - Placebo Response Rate vs. Mean BMD

Output: g_fx_morph_scatter_pr_bmd_regression.cgm (Date Generated: 15JAN2010: 09:58) Source Data: SDF.mtc_morpvertebral

Program: /statistics/amg162/osteo/hta/analysis/final/graphs/g_fx_morph_scatter_pr_bmd_regression.sas

Regression Line is estimated using meta regression  

The size of the circles are propotional to the inverse variance
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Assessing sources of heterogeneity 
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Morphometric Vertebral Fracture - Relative Risk vs. Mean BMD

Output: g_fx_morph_scatter_rr_bmd_regression.cgm (Date Generated: 15JAN2010: 09:58) Source Data: SDF.mtc_morpvertebral

Program: /statistics/amg162/osteo/hta/analysis/final/graphs/g_fx_morph_scatter_rr_bmd_regression.sas

Regression Line is estimated using meta regression  

The size of the circles are propotional to the inverse variance
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Summary 

• NMAs for reimbursement take time 

• Opportunities to take some work off the critical path 

• Additional analyses required 

• NMA protocol can accommodate multiple 
reimbursement agency needs 

• Presentation and reporting of NMAs is important 

• Assumptions and technical details should be documented 
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NMA FOR HEALTHCARE 
DECISION MAKING 

39 
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Summary 

• Increasing use of NMA to conduct comparative 
effectiveness assessments (CEA) 

• Need to be able to review and critique a CEA 

• Likely will need to replicate analyses 

45 



Workshop 4 – NMA opportunities 

• Using private collection 

 What opportunities do you have to conduct NMA in your 
role/company? 

 Is NMA a regular consideration in your drug development 
activities?  If not, what could you do to influence this? 

 How well understood is NMA in your company?  Are there 
opportunities to increase the understanding via educational 
materials/seminars? 

 Write-down an action plan you can take back on 
following up on NMA opportunities 
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NMA IN HTA AGENCY 
METHODOLOGY GUIDELINES 

1 



NICE Methods Guide (April 2013) 

• Reference case should contain H2H trials 

• NMA if required is additional to base case 

• NMA will increase uncertainty associated with the lack 
of direct evidence  

• Use best practices for meta-analyses 

• Network should contain all interventions/comparators 
included in the scope 

• Clear methods explaining selecting trials 

• Present how direct and indirect evidence compare 

• Present results using tabular and graphical displays 

• Present direct evidence separate from NMA 

 

 

2 



US Agency for Healthcare Research and 
Quality (AHRQ) 

• Study identification from searches of at least 2 databases and 
supplementary measures 

• Greater weight to studies looking at clinical endpoints rather than 
surrogate endpoints 

• All indirect analyses accompanied by sensitivity analysis for 
robustness assessment 

• Random effect methods preferred unless small studies results 
systematically differ from larger studies results 

• Effect measure preference 

• Binary outcome – OR or RR 

• Continuous outcome – actual or standardised mean difference 

• Time to event outcome – HR (with verification of proportionality 
assumption in the trials) 
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Canadian Agency for Drugs and 
Technologies in Health (CADTH) 

• Emphasise need to assess similarity of trials for 
patient/methodological factors and date of the trial 

• Trials included must have high external validity 

• Can include Mixed Treatment Comparisons, but 
preference for IC – need to assess inconsistency 
between direct and indirect evidence 

• Random effects methods can be used 

• IC methodology based on OR, using anything else 
needs elaboration 

• If no statistical difference found, suggest calculating the 
power of the IC to detect a difference 

 4 



Australian Pharmaceutical Benefits 
Advisory Committee (PBAC) 

• Clear justification for inclusion of trials, and they all must have high 
external validity 

• Can use random effects methods if more than 1 trial has evaluated 
a pair of treatments 

• Meta regression is possible if at least 10 trials have measured the 
covariate 

• Sensitivity analyses assess impact of including any controversial 
trials  

• Effect measure preference 

• Binary outcome – RR 

• Continuous outcome – actual or standardised mean difference 

• Time to event outcome – HR 

• Reporting an IC – treatment effect for each RCT, pooled estimate 
for each paired comparison, and indirect estimate of treatment 
effect of interest 
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Australian PBAC Working Group 

• Expanded version of PBAC recommendations 

• Use multiple measures of treatment effect – for binary 
outcome 

• Risk difference 

• Number needed to treat 

• Odds ratio 

• Relative risk of harm 

• Relative risk of benefit 

• No similar recommendations for categorical, continuous 
or time to event outcome 

• Should choose measure of effect to minimise 
differences between trials 
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IWQIG (methods V4) 

• Routine use of these methods is not advisable 

• In certain situations NMA can be considered 

• Lower certainty of results 

• Only accepts adjusted indirect comparisons 

• Bucher, MTC 

• Assumption of consistency is critical 

• Full description of the model and unclear issues 
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Recommendations by EUnetHTA on 
direct and indirect comparisons 

1. Systematic review is a pre-
requisite 

2. Only combine comparable 
studies 

3. Choice of model (fixed vs 
random) based on 
characteristics of studies 

4. Investigate potential sources of 
bias 

5. Apply range of sensitivity 
analyses, e.g. outliers 

6. Direct evidence preferred 

7. Evaluate direct and indirect 
evidence separately 

 

 

 

8. Use methods that maintain 
randomisation 

9. Choice of method relies on 
network of evidence 

10. Only conduct analyses if data 
are homogeneous and 
consistent 

11. Explicitly state the assumptions 
made  

12. Justify choice of priors for 
Bayesian methods 

13. Aim for most parsimonious 
model 

8 EUnetHTA guideline comparators and comparisons:  direct and indirect comparisons.  EUnetHTA website.  Feb 2013 
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A Comparison of National Guidelines for Network Meta-Analysis    SUBMITTED FOR PUBLICATION 

Andrew Laws MSc(1), Robyn Kendall PGCert BSc(1), Neil Hawkins PhD CStat(2). 

(1) Oxford Outcomes (Vancouver), (2) Oxford Outcomes (Oxford)  
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Review of national guidelines - conduct 
of indirect comparisons 
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A Comparison of National Guidelines for Network Meta-Analysis    SUBMITTED FOR PUBLICATION 

Andrew Laws MSc(1), Robyn Kendall PGCert BSc(1), Neil Hawkins PhD CStat(2). 

(1) Oxford Outcomes (Vancouver), (2) Oxford Outcomes (Oxford)  

  Include in Indirect Comparison     Recommended Scales for Data 
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Summary from HTA agency 
methodology guidelines 

• NMAs should only be conducted when RCTs don’t exist 

• Less weight is given to a NMA compared to RCTs 

• Observational data should not be used in a NMA 

• Most note that a NMA has relatively low power to detect 
important differences 

• All HTA bodies comment on the underlying assumption 
that a NMA is only valid if the contributing RCTs are 
similar 
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NMA ‘Best Practices’ 

Neil Hawkins, PhD, CStat 

Vice President, Health Economics, Icon PLC 

Honorary Professor, (Health Economics and Health Technology Assessment), University of Glasgow   
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Methodological problems in the use of NMA 

• Unclear understanding of underlying assumptions 

• Incomplete search and inclusion of relevant studies 

• Use of flawed or inappropriate methods 

• Lack of objective and validated methods to assess or improve 

trial similarity 

• Inadequate comparison and inappropriate combination of 

direct and indirect evidence  
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Some NMA ‘Best’ Practice guidelines  

• NICE DSU TECHNICAL SUPPORT DOCUMENT 7: EVIDENCE 
SYNTHESIS OF TREATMENT EFFICACY IN DECISION MAKING: A 
REVIEWER’S CHECKLIST (7http://bit.ly/HPZS16) 

• ISPOR Indirect comparisons and NMA good research practices 
(http://bit.ly/1aXdapc) 

• EUnetHTA: Methodological guideline for REA of pharmaceuticals: Direct 
and indirect comparison (http://bit.ly/1bJJatz) 

• National HTA guidelines: Australia, Belgium, Canada, England & Wales, 
France, Germany, Scotland, South Africa, Spain 
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EUnetHTA: Recommendations 

 

1. A systematic literature search is a pre-requisite to conducting a direct or indirect comparison 

2. Studies that differ substantially in one or more key characteristics should not be combined 

3. The choice between a fixed and random effects model should be based on the characteristics of the studies being 
analysed 

4. Potential sources of bias should be investigated 

5. Attention should be given to determining the presence of outliers or influential observations  

6. Where sufficient good quality head-to-head studies are available, direct comparisons are preferred as the level of evidence 
is high  

7. If both direct and indirect evidence are available, they can be evaluated separately 

8. Only adjusted methods of indirect comparison that maintain randomisation should be used 

9. The choice of indirect comparison method relies on the network of available evidence. Preference should be given to the 
most transparent method available (i.e. one should favour Bucher’s method of adjusted indirect comparison over MTC if 
the data permit its usage and the appropriate assumptions are satisfied) 

10. An indirect comparison should only be carried out if underlying data from comparable studies are homogeneous and 
consistent, otherwise the results will not be reliable 

11. The assumptions made for indirect comparisons must be explicitly stated. Particular attention should be given to the 
homogeneity, similarity and consistency assumptions. A general assumption of indirect comparisons is that the relative 
effectiveness of a treatment is the same across all studies included in a meta-analysis 

12. When Bayesian methods are applied, the choice of the prior distributions should be justified and documented 

13. The complexity of a model is not a measure of its accuracy or utility and preference is for the most parsimonious model 
whose assumptions can be justified 
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Enron’s accounts 

What is the link to network meta-analysis? 
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…like accounts, interpretation of NMAs requires 
judgement (plus we should worry about off-balance sheet 
items) 

Accounting standards 

• U.S. Generally Accepted Accounting Principles(US 
GAAP): rule-based 

• International Financial Reporting Standards (IFRS): 
principle-based 

 

Network meta-analysis 

• What are the principles? 
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Perhaps? 

• Should systematically identify and use relevant 
evidence 

• Help consumers to evaluate the usefulness of the 
analysis (based on the consistency constraint ) 

• Report transparently (in sufficient detail to allow 
replication and modification) 

9 



Identify and use relevant evidence 

• Define PICO criteria (Population, Intervention, 
Comparators, Outcomes) correspond to decision 
problem 

• May need to extend search beyond treatments in PICO 
criteria 

• May include unlicensed treatments 

• Need to conduct a credible and repeatable search 
(PRISMA guidelines) 

10 



May need to extend search beyond 
treatments in PICO criteria 

11 



Help consumers to evaluate the 
usefulness of the analysis  

Referred to as: 

•Consistency  

• Indirect and direct estimates are consistent 

•Exchangeability 

• If treatments were exchanged between trials estimates 
would be the same (allowing for random variation) 

•Similarity 

• The trials are similar and comparable 

•Transitivity 

 

 
 

BCACAB 

BCACAB  CBABAC 
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Consider a single trial 

A  (Response = 30%) 

C (10%) 

B (20%) 
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By definition consistent on the relative risk scale... 

A (30%) 

RR: 3 RR: 2 

C  (10%) 

B  (20%) 
RR: 1.5 

BvsC

AvsC
AvsB RR

RR
RR  5.1

2
3 AvsBRR
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Also on the odds ratio scale... 

A  (30%) 

OR: 3.86 OR: 2.25 

C (10%) 

B  (20%) 
OR: 1.71 

BvsC

AvsC
AvsB OR

OR
OR  71.1

25.2
86.3 AvsBOR
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And on the risk difference (RD) scale... 

A (30%) 

RD: +20% RD: +10% 

C (10%) 

B (20%) 
RD: +10% 

BvsCAvsCAvsB RDRDRD  %10%10%20 AvsBRD
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Consider multiple trials 

A (60%) 

C (20%) 

B (10%) 

C (5%) 

A  (45%) B  (30%) 

RR: 3 

RR: 1.5 

RR: 2 
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The indirect estimate of RR A vs. B… 

A (60%) 

C (20%) 

B (10%) 

C (5%) 

5.1
2

3 
BvsC

AvsC
AvsB RR

RR
RR

RR: 3 RR: 2 
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Is consistent with the direct estimate… 

A (60%) 

C (20%) 

B (10%) 

C (5%) 

A (45%) B (30%) 

RR: 3 RR: 2 

RR: 1.5 

5.1
2

3 AvsBRR
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The indirect estimate of RD A vs. B 

A (60%) 

C (20%) 

B (10%) 

C (5%) 

%35%5%40  BvsCAvsCAvsB RDRDRD

RD: +40% RD: +5% 
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Is inconsistent with the direct estimate… 

A (60%) 

C (20%) 

B (10%) 

C (5%) 

A (45%) B (30%) 

RD: +40% RD: +5% 

RD: +15% 

RDAvsB = 40%-5%= +35%

21 



Consistency 

• Is only an assumption, not a natural law 

• Randomisation within trials supports internal 

• Comparisons across trials are observational 

• May depend on choice of scale 

• Is a ‘model’ 

"essentially, all models are wrong, but some are 

useful"  George Box 
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Need to consider heterogeneity 

Heterogeneity eh! 

 

• Expect it 

• Expose it 

• Examine it 

• Explain it 

• Embrace it 

 
George Wells 
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Expect it! 

• Differences in patients 

• Differences in study designs 

• Differences in treatments 

 

Examples? 

 

• Comparison of average treatment effect estimates 

• Biased by predictive factors 

• Not biased by ‘purely’ prognostic factors (on the scale used for analysis) 
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Expose it! 
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Examine it! 
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Explain it! 
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Embrace it! 
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‘Studies that differ substantially in one or more key 
characteristics (e.g. participants, interventions, outcomes 
measured) should not be combined’  

 

Discuss? 
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‘Where sufficient good quality head-to-head studies are 
available, direct comparisons are preferred as the level of 
evidence is high’ 

 

Discuss? 

 

36 



Transparent Reporting 
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Recommendations 

• Clearly identify studies  

• Report treatments included in each study 

• Report data / effect sizes for each study 

• Describe statistical model 

• Supply code and data 

• Report treatment effects compared to reference 
treatment 

• Report pairwise comparison of all treatments 

• Report probability best / ranking of treatments  
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Beware disconnected networks 

LAM ADV

ETV

ETV+TDF

LdT PEG

PEG+ADV PEG+LAM

PLA TDF
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Also beware zero event counts 
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Piccolo 2009 (n=30,30)

Lok 2012 (n=56,59)

Marcellin 2008 (n=125,250)

Haditannis 2003 (n=123,61)

Marcellin 2004 (n=179,181,177)

Lai 2007 (n=224,222)

Hou 2008 (n=22,20)

Lai 2006 (n=313,325)

Neg HBV
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Probability best – what is the problem? 
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Need to show all rankings 

Does not allow for structural uncertainty (‘best’ case estimate) 
45 



Why not use ‘forest’ plot 
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Because of correlations in effect estimates 
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Which arise from the network 
structure 

Compared With 
Placebo 

Docetaxel Erlotinib 

Gefitinib Pemetrexed 

r: 0.48(0.24:0.96) 
r: 0.7(0.58:0.85) 

r:  0.89 (0.79 to1.01) 

r: 1.02 (0.91 to 1.14) r:  0.99 (0.82 to 1.2) 
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Need to report all pairwise comparisons 

 Placebo Erlotinib Pemetrexed Docetaxel Gefetinib 

Placebo - 1.43 ( 1.18:1.72 ) 1.2 ( 0.93:1.53 ) 1.18 ( 1:1.39 ) 1.14 ( 1.01:1.29 ) 

Erlotinib 0.71 ( 0.58:0.85 ) - 0.84 ( 0.61:1.14 ) 0.83 ( 0.64:1.06 ) 0.81 ( 0.64:1 ) 

Pemetrexed 0.85 ( 0.66:1.08 ) 1.22 ( 0.88:1.65 ) - 1.00 ( 0.82:1.2 ) 0.97 ( 0.77:1.2 ) 

Docetaxel 0.85 ( 0.72:1 ) 1.22 ( 0.94:1.56 ) 1.01 ( 0.83:1.22 ) - 0.97 ( 0.86:1.08 ) 

Gefetinib 0.88 ( 0.78:0.99 ) 1.26 ( 1:1.57 ) 1.05 ( 0.83:1.3 ) 1.03 ( 0.92:1.16 ) - 

 

Figures are row treatments compared with column treatments 
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Some alternative presentations of uncertainty 
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Finally: from the ‘Professional Meta-Analyst’ 

Three aims of meta-analysis: 

1st to obtain increased power 

2nd to obtain the best risk estimate from many, often 
conflicting or even bewildering, studies. In its best 
form, it is an attempt to clarify some of the 
heterogeneity between studies by subgroup 
analysis. 

3rd  to answer a question which the original studies 
were not aimed at 

 

Rosendall 1994. J Clin Epidemiol Vol. 47. No. 12,p p. 1325-1326 53 



Is exchangeability implicit in clinical decision-
making? 

 

 RCT: A vs Placebo:   
Exchangeability 

RCT: B vs Placebo:    

Future Patient:   
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CONCLUSIONS & WRAP-UP 

1 



Conclusions 

2 

• NMA are a key component of drug development plans 
and support defining product “value”  

• NMA enable indirect comparisons to be made with other 
therapies used in clinical practice but not compared in 
head to head randomized controlled trials 

• NMA are observational with strong assumptions and 
need to be interpreted with caution with key limitations 
and biases fully described 

• NMA require cross-functional engagement and 
alignment between clinicians, statisticians, and health 
economists 



Recommendations 

• Ensure global product development plans include NMA 
activities 

• Plan to conduct NMAs during phase 2/3 to understand 
evolving clinical evidence 

• Educate the fundamentals of NMAs to cross-functional 
partners 

• Statisticians are responsible for conducting NMAs 

 

3 

526 



Statisticians play an important role in 
NMAs 

• Statisticians bring strategic contributions to product 

teams in planning NMAs 

• Statisticians can plan the detailed analyses required for 

NMAs 

• Statisticians have the technical expertise and tools to 

conduct extensive and robust NMAs 

• Statisticians can present and appropriately interpret the 

results of NMAs 
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5 

Lessons learned from case studies 

• Early team input and buy in is essential 

• Obtain draft data and get analysis programs in place off 

critical path 

• Perform validation of data extraction from systematic 

review 

• May require a large number of analyses 

• # endpoints x # treatments x # analysis sets 

• Automate indirect (and mixed treatment) comparisons 

within SAS v9.2 (9.3)  

• use WinBUGS as a validation tool 

• Publication planning 
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